首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
History of weather forecasting Early methods Almanacs connected the weather with the positions of different【L3
History of weather forecasting Early methods Almanacs connected the weather with the positions of different【L3
admin
2022-03-30
9
问题
History of weather forecasting
Early methods
Almanacs connected the weather with the positions of different【L31】________at particular times.
Invention of weather instruments
A hydrometer showed levels of【L32】________ (Nicholas Cusa 1450)
Temperature variations — first measured by a thermometer containing【L33】________(Galileo Galilei 1593)
A barometer indicated air pressure (Evangelista Torricelli 1645)
Transmitting weather information
The use of the【L34】________allowed information to be passed around the world.
Daily【L35】________ were produced by France.
Producing a weather forecast
Weather observation stations are found mostly at【L36】________around the country.
Satellite images use the colour orange to show【L37】________
The satellites give so much detail that meteorologists can distinguish a particular 【L38】________.
Information about the upper atmosphere is sent from instruments attached to a【L39】________
Radar is particularly useful for following the movement of【L40】________
【L32】
I work for the National Weather Service and as part of your course on weather patterns, I’ve been asked to talk to you about how we predict the weather. We’re so used to switching on our TVs and getting an up-to-date weather forecast at any time of day or night that we probably forget that this level of sophistication has only been achieved in the last few decades and weather forecasting is actually an ancient art. So I want to start by looking back into history.
The earliest weather forecasts appeared in the 1500s in almanacks, which were lists of information produced every year.
Their predictions relied heavily on making connections between the weather and where the planets were in the sky
on certain days. In addition, predictions were often based on information like if the fourth night after a new moon was clear, good weather was expected to follow.
But once basic weather instruments were invented, things slowly started to change. In the mid-fifteenth century a man called Nicholas Cusa, a German mathematician,
designed a hygrometer which told people how much humidity there was in the air.
To do this, Cusa put some sheep’s wool on a set of scales and then monitored the change in the wool’s weight according to the air conditions.
A piece of equipment we all know and use is the thermometer. Changes in temperature couldn’t really be measured until the Italian Galileo Galilei invented his thermometer in 1593. It wasn’t like a modern-day thermometer because
it had water inside it
instead of mercury. In fact, it wasn’t until 1714 that Gabriel Fahrenheit invented the first mercury thermometer. In 1643 another Italian called Evangelists Torricelli invented the first barometer which measured atmospheric pressure. This was another big step forward in more accurate weather predicting.
As time went on, during the 17th, 18th and 19th centuries, all these meteorological instruments were improved and developed and people in different countries began to record measurements relating to their local weather. However, in those days it was very difficult to send records from one part of the world to another so
it wasn’t possible for them to share their information until the electric telegraph became more widespread.
This meant that weather observations could be sent on a regular basis to and from different countries. By the 1860s, therefore, weather forecasts were becoming more common and accurate because they were based on observations taken at the same time over a wide area.
In 1863, France started building weather maps each day.
This hadn’t been done before, and other nations soon followed. So that was the start of national weather forecasting and I’ll now tell you how we at the National Weather Centre get the information we need to produce a forecast.
Even today, one of the most important methods we use is observations which tell us what the weather is doing right now. Observation reports are sent automatically from equipment at a number of weather stations in different parts of the country.
They are nearly all based at airports
although a few are in urban centres. The equipment senses temperature, humidity, pressure and wind speed and direction. Meteorologists also rely really heavily on satellites which send images to our computer screens. What we see on our screens is bright colours.
Orange represents dry air
and bright blue shows moisture levels in the atmosphere. The satellites are located 22,000 miles above the surface of the Earth and it’s amazing that despite that distance
it’s possible for us to make out an individual cloud
and follow it as it moves across the landscape.
In addition to collecting data from the ground, we need to know what’s happening in the upper levels of the atmosphere. So a couple of times a day from many sites across the country, we send radiosondes into the air.
A radiosonde is a box containing a package of equipment and it hangs from a balloon
which is filled with gas. Data is transmitted back to the weather station.
Finally, radar. This was first used over 150 years ago and still is. New advances are being made all the time and it is
one method for detecting and monitoring the progress of hurricanes.
Crucial information is shown in different colours representing speed and direction. Radar is also used by aircraft, of course.
All this information from different sources is put into computer models which are like massive computer programs. Sometimes they all give us the same story and sometimes we have to use our own experience to decide which is showing the most accurate forecast which we then pass on to you. So I hope next time you watch the weather forecast, you’ll think about how we meteorologists spend our time. And maybe I’ve persuaded some of you to study meteorology in more depth.
选项
答案
humidity
解析
本题询问湿度计显示什么的水平。录音原文中的told people how much…是题目中showed levels of...的同义表述,故空格处填入humidity,即湿度计显示的是水分含量的多少。
转载请注明原文地址:https://jikaoti.com/ti/RQAYFFFM
本试题收录于:
雅思听力题库雅思(IELTS)分类
0
雅思听力
雅思(IELTS)
相关试题推荐
LookatthefollowingnotesthathavebeenmadeaboutthematchesdescribedinReadingPassage1.Decidewhichtypeofmatch(A-
WhysomewomencrossthefinishlineaheadofmenRECRUITMENTThecourseistougherbutwomenarestayi
ReadingPassage3hassevenparagraphsA-G.FromthelistofheadingsbelowchoosethemostsuitableheadingsforparagraphsB
ReadthepassagebelowandanswerQuestions28-40.TheHistoryofEarlyCinemaThehistoryofthecinemain
ToptipsonhowtogetfurtherupthecareerladderMovingjobsisnolongerquiteaseasyasitwasjustacoupleofyearsago,
ChoosethecorrectletterA,B,CorD.Writeyouranswersinboxes12-13onyouranswersheet.WhydidTomQuinndecidenotto
Completeeachsentencewiththecorrectending,A-F,below.Writethecorrectletter,A-F,onyouranswersheet.Aaregivingr
REVIEWOFRESEARCHONTHEEFFECTSOFFOODPROMOTIONTOCHILDRENThisreviewwascommissionedbytheFoodStandardsAgencytoex
Theuniversityhasproduceda______toinformstudentsaboutthedifferentaccommodationoptionsavailable.BreconHalls
ChooseTWOletters,A-E.WhatTWOpiecesofadvicedoesthespeakergiveaboutpainting?APutaheaterintheroom.BWashbr
随机试题
流水机器的中断处理有哪些方法?各有什么优缺点?
应用光或其他能量表现被照体信息状态,并以可见影像加以记录的技术称
情景描述:某商业中心地上4层,建筑高度为20m,耐火等级为一级,每层层高均为5m,每层建筑面积均为5000m2。该商业中心按有关国家工程建设消防技术标准配置了自动喷水灭火系统、火灾自动报警系统等消防设施及器材,一歌舞厅位于该商业中心的地上四层,建筑面积为2
标的证券为股票的,应当符合的条件有()。
某企业2013年6月1日自行建造的一生产车间投入使用,该生产车间建造成本为1200万元,预计使用年限为20年,预计净残值为。10万元。在采用双倍余额递减法计提折旧的情况下,2014年该设备应计提的折旧额为()万元。
根据国务院办公厅转发的《关于建立城市医疗救助制度试点工作的意见》,对救助对象在扣除()后,个人负担超过一定金额的医疗费用或特殊病种医疗费用给予一定比例或一定数量的补助。
李清照《声声慢》:“乍暖还寒时候,最难将息。”中的“将息”是指:
()对于疾病相当于新闻对于()
A、15B、20C、25D、30B
定义无符号整数类为UInt,下面可以作为类UInt实例化值的是( )。
最新回复
(
0
)