首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
admin
2016-04-11
58
问题
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
选项
A、A的列向量组线性相关,B的行向量组线性相关.
B、A的列向量组线性相关,B的列向量组线性相关.
C、A的行向量组线性相关,B的行向量组线性相关.
D、A的行向量组线性相关,B的列向量组线性相关.
答案
A
解析
设A按列分块为A=[α
1
α
2
… α
n
],由B≠0知至少有一列非零,设B的第j列(b
1j
,b
2j
,b
3j
)
T
≠O,则AB的第j列为[α
1
α
2
… α
n
]
=O,
即 b
1j
α
1
+b
2j
α
2
+…+b
3j
α
n
=O,
因为常数b
1j
,b
2j
,…,b
3j
不全为零,故由上式知A的列向量组线性相关,再由AB=0取转置得B
T
A
T
=O,利用已证的结果可知B
T
的列向量组——即B的行向量组线性相关,故(A)正确.
转载请注明原文地址:https://jikaoti.com/ti/PcPRFFFM
0
考研数学一
相关试题推荐
设矩阵(Ⅰ)已知A的一个特征值为3,试求y;(Ⅱ)求矩阵P,使(AP)T(AP)为对角矩阵.
设A为三阶实对称矩阵,为方程组AX=0的解,为方程组(2E-A)X=0的一个解,|E+A|=0,则A=___.
设α1,α2……αn是n个n维向量,且已知a1x1+a2x2+…+anxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+(αn+α1)xn=0(**)何时只有零解?说明理由;何时有非零解?有非零解时,求
设F(u,v)具有一阶连续偏导数,且z=z(x,y)由方程F(,yz)=0所确定.又设题中出现的分母不为零,则()
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=().
设y1(χ),y2(χ)是微分方程y〞+py′+qy=0的解,则由y1(χ),y2(χ)能构成方程通解的充分条件是().
设随机变量X~N(0,1),Y~N(1,4),且相关系数pXY=1,则P{Y=2X+1}=________.
设X1,X2,…Xn是来自总体X的样本,X的分布密度为试用矩估计法估计总体参数θ.
计算曲线积分其中L圆周(x一1)2+y2=2,其方向为逆时针方向.
设f(u)具有连续的一阶导数,LAB为以为直径的左上半个圆弧,从A到B,其中点A(1,1),点B(3,3).则第二型曲线积分=________
随机试题
挥发油在水中常加入的增溶剂是
上颈段脊髓肿瘤脊髓空洞症
患者,女,45岁。失眠2个月,近日来入睡困难,有时睡后易醒,醒后不能再睡,甚至彻夜不眠,舌苔薄,脉沉细。治疗应首选
最佳含水量是根据不同土类的性质,采用不同的试验方法确定的,测定无黏聚性自由排水粗粒土和巨粒土的最大干密度可采用的方法是()。
混凝土耐久性包括()等几个方面。
电算化会计核算记账是—个功能按键,由计算机自动完成相关账簿登记。()
简述体育学习评价的原则。
2015年我国车辆和驾驶人保持快速增长,至2015年年底,全国机动车保有量达2.79亿辆,比上年增长11.7%,全国机动车驾驶人数量达3.24亿人,比上年增长8.0%。其中,我国汽车保有量达1.72亿辆,是2003年汽车保有量的7.2倍。2015年新注册登
分析下列材料并回答问题。材料1经济全球化使美国获得了巨额的国际资本。过去十多年里,美国始终是全球最大的资本输出国,同时也是最大的资本输入国。大量的外资净流入,有效地抵消了国内私人储蓄水平持续下降和巨额贸易逆差的不利影响,对于保持较高的就
APosterAboutanAcademicReportForthispart,youareallowed30minutestowriteaposteraboutanacademicreport.You
最新回复
(
0
)