首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有连续导数,且满足f(x)=x+∫0xtf’(x-t)dt.求极限
设f(x)具有连续导数,且满足f(x)=x+∫0xtf’(x-t)dt.求极限
admin
2019-05-14
38
问题
设f(x)具有连续导数,且满足f(x)=x+∫
0
x
tf’(x-t)dt.求极限
选项
答案
由已知条件∫
0
x
tf’(x-t)dt可化为f(x)=x+x∫
0
x
f’(u)du-∫
0
x
uf’(u)du.两边对x求导,得:f’(x)=1+∫
0
x
f’(u)du+x f’(x)- x f’(x)=1+f(x)-f(0)= 1+f(x) (f(0)=0) 于是,f(x)=e
x
一1.所以[*]
解析
f(x)的表达式中含有参变量的积分,应经变量替换将参变量移至积分号外或积分限上,再求极限.∫
0
x
tf’(x-t)dt
∫
0
x
(x-u)f’(u)du=x∫
0
x
f’(u)du-∫
0
x
uf’(u)du将参变量x提到积分号外后,已知条件可化为:f(x)=x+x∫
0
x
f’(u)du-∫
0
x
uf’(u)du .
(1)本题的关键是求出f(x)的表达式.当已知条件是由积分方程给出时,通过求导可得出f(x)所满足的微分方程: f’(x)一f(x)=1, f(0)=0.由通解公式,可得通解为:f(x)=e
-∫(-1)dx
[∫1.e
∫(-1)dx
dx+c]=ce
x
-1 由f(0)=0,得f(x)=e
x
一1.一般地,一阶线性微分方程Y’+p(x)y=q(x)的通解为:y= e
-∫p(x)dx
[∫1.e
∫p(x)dx
+c]
(2)在计算含参变量的积分时,应通过变量替换将参变量提至积分号外或积分限上,再作计算.
转载请注明原文地址:https://jikaoti.com/ti/N9oRFFFM
0
考研数学一
相关试题推荐
设随机变量X,Y相互独立且都服从二项分布B(n,p),则P{min(X,Y)=0}=_________.
求微分方程xy’+(1一x)y=e2x(x>0)的满足=1的特解.
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率。逐个抽取,取后放回.
求直线L:绕z轴旋转所得旋转面与两平面z=0,z=1所围成的立体体积。
如图3一15所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是()
求数列极限。
设函数y=y(x)由参数方程确定,其中x(t)是初值问题.
将一枚骰子独立地重复掷n次,以Sn表示各次掷出的点数之和.(Ⅰ)证明:当n→+∞时,随机变量Un=的极限分布是标准正态分布;(Ⅱ)为使P{|-3.5|<0.10}≥0.95,至少需要将骰子重复掷多少次?
自动生产线在调整后出现废品的概率为p(0<P<1),当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的概率分布、数学期望和方差.
(Ⅰ)设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明λ=-1必是矩阵A与B的特征值;(Ⅱ)若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明向量组α,β线性无关.
随机试题
横向传播
胸骨角平对()
57.材料1:列宁指出,“就本来的意义说,辩证法就是研究对象的本质自身中的矛盾。99他还指出,“是实际生活中的实际矛盾,即辩证的矛盾,而不是字面上的、臆造出来的矛盾。”材料2:杜林说,“矛盾的东西是一个范畴。这个范畴只能归属于思想组合,而不能归属于现实”材
动物性食物主要提供
设计合同示范文本中规定的设计人的责任有( )。
2月10日,某投资者以150点的权利金买入一张3月份到期、执行价格为10000点的恒生指数看涨期权,同时,他又以100点的权利金卖出一张3月份到期、执行价格为10200点的恒生指数看涨期权。那么该投资者的最大可能盈利(不考虑其他费用)是()点。
A企业为了控制合同风险,明确规定其法定代表人郭某对外签订合同的最高限额为200万元。2004年4月1日,郭某在一次商品交易会上,为了抓住稍纵即逝的商机,代表A企业与B企业签订了一份250万元的买卖合同,B企业并不知道郭某违反了A企业的内部规定。按照买卖合同
别踩疼了雪①我和女儿在焦急地等待一场雪的降临。②雪,只在女儿的童话和梦境里飘过。我一直这样认为:没有触摸过雪花的女孩,永远也做不了高贵的公主。我领她到雪的故乡来,就是要让她看看雪是怎样把人间装扮成宫殿,把人装扮成天使的。③带女
下列变化属于扁平苔藓的病理表现的是()。
颌外动脉自何处由颈外动脉发出()。
最新回复
(
0
)