首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,…,ηs是非齐次线性方程组Aχ=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明χ=k1η1+k2η2+…+ksηs也是方程组的解.
设η1,…,ηs是非齐次线性方程组Aχ=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明χ=k1η1+k2η2+…+ksηs也是方程组的解.
admin
2016-05-09
45
问题
设η
1
,…,η
s
是非齐次线性方程组Aχ=b的s个解,k
1
,…,k
s
为实数,满足k
1
+k
2
+…+k
s
=1.证明χ=k
1
η
1
+k
2
η
2
+…+k
s
η
s
也是方程组的解.
选项
答案
由于η
1
,…,η
s
是非齐次线性方程组Aχ=b的s个解,故有 Aη
i
=b(i=1,…,s), 当χ=k
1
η
1
+k
2
η
2
+…+k
s
η
s
, 有Aχ=A(k
1
η
1
+k
2
η
2
+…+k
s
η
s
)=k
1
Aη
1
+k
2
Aη
2
+…+k
s
Aη
s
=b(k
1
+…+k
s
)=b, 即Aχ=b(χ=k
1
η
1
+k
2
η
2
+…+k
s
η
s
), 由此可χ也是方程的解.
解析
转载请注明原文地址:https://jikaoti.com/ti/K2PRFFFM
0
考研数学一
相关试题推荐
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求正交变换x=Qy将二次型f(x1,x2,x3)化为标准形
已知二次型f(x1,x2,x3)=xTAx,A是3阶实对称矩阵,满足A2-2A-3E=O,且|A|=3,则该二次型的规范形为()
微分方程ey=x的通解为________
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
设矩阵A=与对角矩阵A相似求方程组(-2E-A*)x=0的通解
设α,β是3维单位正交列向量,则二次型f(x1,x2,x3)=xT(2ααT+ββT)x的规范形为()
设A=[α1,α2,α3,α4],且η1=[1,1,1,1]T,η2=[0,1,0,1]T是齐次线性方程组Ax=0的基础解系,则().
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)].试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
随机试题
把下面的句子翻译成现代汉语。膝语蛇行,不敢举头。
根据损伤的组织关节损伤可分为:______;______;______;______;______。
SouthAmericaLocatedmostly(most)inthesouthernhalfoftheearth,SouthAmericaisavery【C1】________(interest)contin
肽链从核蛋白体释放后,在细胞内需进行的修饰处理有
小儿重舌,多属( )
一幢12层宾馆,层高3.3m,两客房卫生间背靠背对称布置并公用排水立管,每个卫生间设浴盆、洗脸盆、冲落式坐便器各一只。排水系统污废分流,共用一根通气立管,采用柔性接口机制铸铁排水管。则污水立管的最小管径应为()。
下列关于企业文化的说法错误的是()。
张居正为解决当时的财政困难,推行“一条鞭法”。下列说法正确的是()。①缓解财政紧张状况②简化了征收手续③一定程度上减轻人民负担④促进农业生产发展
Itisthebusinessofthepolicetopreventanddetectcrimeandofthelawcourtstopunish______.
Dolemaynolongerhavetoblowawaythecompetitiontotriumphinthe______expectationsgame.Nowthepartyeldershope,all
最新回复
(
0
)