首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明: (1)存在ξ∈(0,1),使得f’(ξ)=1. (2)存在η∈(一1,1),使得f"(η)+f’(η)=1.
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明: (1)存在ξ∈(0,1),使得f’(ξ)=1. (2)存在η∈(一1,1),使得f"(η)+f’(η)=1.
admin
2019-07-19
21
问题
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:
(1)存在ξ∈(0,1),使得f’(ξ)=1.
(2)存在η∈(一1,1),使得f"(η)+f’(η)=1.
选项
答案
(1)令 F(x)=f(x)一x,F(0)=f(0)=0,F(1)=f(1)一1=0, 由罗尔定理知,存在ξ∈(0,1)使得F’(ξ)=0,即f’(ξ)=1. (2)令G(x)=e
x
[f’(x)一1],由(1)知,存在ξ∈(0,1),使G(ξ)=0,又因为f(x)为奇函数,故f’(x)为偶函数,知G(一ξ)=0,则存在η∈(一ξ,ξ)[*](一1,1),使得G’(η)=0,即 e
η
(f’(η)一1)+e
η
f"(η)=0,f"(η)+f’(η)=1.
解析
转载请注明原文地址:https://jikaoti.com/ti/JlQRFFFM
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξ1∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=0(i=1,2);
随机地取某种炮弹9发做试验,得炮口速度的样本标准差S=11.设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差的置信度为0.95的置信区间.
讨论方程2x3-9x2+12x-a=0实根的情况.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设直线y=ax(0<a<1)与抛物线y=x2所围封闭图形的面积记为S,它们与直线x=1所围成的图形面积为S2。试求a的值,使S1+S2最小,并求此最小面积。
设(1)求作对角矩阵D,使得B~D.(2)实数k满足什么条件时B正定?
设随机变量x的分布函数为F(x),则下列函数中可作为某随机变量的分布函数的是().
已知向量组α1,α2,α3,α4线性无关,则向量组()
求不定积分
设f(x)连续可导,导数不为0,且f(x)存在反函数f-1(x),又F(x)是f(x)的一个原函数,则不定积分
随机试题
性成熟期,女性生殖器官具有周期性变化的是()
APOXBPASCAS-DNAEDACPENAP诊断慢淋最常用的化学染色是
《纲要》提出“十一五”时期要努力实现()方面目标。
某人有1200元,拟投入报酬率为8%的投资机会,经过( )年才可使现有货币增加1倍。
人员因素是当前我国金融机构各类风险的主要来源之一。()
山东省被誉为“鲁东明珠”的景点是()
英国科学家宣称,已找到了一种替代全球定位系统(GPS)的方法,而无需借助任何空间技术。研究发现,激光能够限制并冷却放置于真空条件下的原子,将温度降至绝对零度以上的百万分之一度。在这样的温度下,原子对地球的磁性和重力领域的变化极度敏感。研究者利用这些成果,可
下图中的立体图形①是由立体图形②、③和④组合而成,下列哪一项能够填入问号处?
In2004afewdozenmembersofCongressaskedtheFederalCommunicationsCommissionwhetherthegovernmentcoulddefineandregu
在分布式结构化拓扑结构中,最新的发现是()。
最新回复
(
0
)