首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
admin
2019-05-14
41
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n一r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n—r
. 设η
0
为方程组AX=b的一个特解, 令β=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n—r
=ξ
n—r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n—r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n—r
β
n—r
=0,即 (k
0
+k
1
+…+k
n—r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n—r
)b=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n—r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
=0, 注意到ξ
1
,ξ
2
,…,ξ
n—r
线性无关,所以k
1
=k
2
=…=k
n—r
=0, 故β
0
,β
1
,β
2
,…,β
n—r
线性无关,即方程组AX=b存在由n一r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n—r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
一β
1
,γ
2
=β
3
一β
1
,…,γ
n—r+1
=β
n—r+1
一β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n—t+1
线性无关,又γ
1
,γ
2
,…,γ
n—t+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n一r+1个线性无关的解,矛盾,所以AX=b的任意n一r+2个解向量都是线性相关的,所以 AX=b的线性无关的解向量的个数最多为n一r+1个.
解析
转载请注明原文地址:https://jikaoti.com/ti/E4oRFFFM
0
考研数学一
相关试题推荐
求方程y"+y’一2y=2cos2x的通解。
设e<a<b,证明:a2<<b2。
已知函数y=,试求其单调区间、极值以及函数图形的凹凸区间、拐点和渐近线,并画出函数的图形。
设函数f(x),g(x)在[a,b]上连续,且g(b)=g(a)=1,在(a,b)内f(x)与g(x)可导,且g(x)+g’(x)≠0,f’(x)≠0。证明:存在ξ,η∈(a,b),使得
求数项级数的和。
设总体X服从二项分布B(10,P),χ1,…,χn是取自总体X的一个简单随机样本值.求未知参数p的最大似然估计量.
一条生产线生产的产品正品率为p(0<p<1),连续检查5件,X表示在查到次品之前已经取到的正品数,求X的数学期望.(在两次检查之间各件产品的质量互不影响)
设A、B是两个随机事件,P(A)=0.4,P(B|A)+P()=1,P(A∪B)=0.7,求P().
设f(x)=则下列结论(1)x=1为可去间断点.(2)x=0为跳跃间断点.(3)x=-1为无穷间断点.中正确的个数是
设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_________.
随机试题
后鼻孔闭锁,最佳检查方法是
合同被确认无效或被撤销的法律后果是
将数a2分为三个正数之和,使得它们的乘积最大.
A.Ⅰ度深覆盖B.Ⅱ度深覆盖C.Ⅲ度深覆盖D.Ⅰ度深覆牙合E.Ⅱ度深覆牙合下前牙切端前后距离为6mm,是指
全冠戴用后出现食物嵌塞可能的原因是
以下血尿是指每高倍视野下红细胞数()
F3功能键在不同的软件中有不同的规定。()
在我国现行会计实务中,对固定资产修理费用,企业可采用()方法进行核算。
下列关于基金公开募集与非公开募集的说法中,正确的是()。Ⅰ.私募基金是通过非公开方式募集基金Ⅱ.公募基金面向不确定的广大的公众Ⅲ.私募基金募集的对象足少数特定的投资者Ⅳ.私募基金对信息披露有非常严格的要求
某男,40岁。8个月前,因让妻子开车去老家看望父母,不幸遇交通事故身亡,遭女方家人责备。该男承受巨大压力,内心痛苦,情绪低沉。目前一切后事交通事故纠纷已经处理完毕,情绪稍微稳定。家人为了使其及早摆脱痛苦,为其介绍了一位对象,现双方均有意发展关系,但自己不知
最新回复
(
0
)