首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶方阵,E+A可逆,记f(A)=(E—A)(E+A)—1,证明: (1)(E+f(A))(E+A)=2E. (2)f(f(A))=A.
设A是n阶方阵,E+A可逆,记f(A)=(E—A)(E+A)—1,证明: (1)(E+f(A))(E+A)=2E. (2)f(f(A))=A.
admin
2017-07-26
38
问题
设A是n阶方阵,E+A可逆,记f(A)=(E—A)(E+A)
—1
,证明:
(1)(E+f(A))(E+A)=2E.
(2)f(f(A))=A.
选项
答案
(1)(E+f(A))(E+A)=[E+(E—A)(E+A)
—1
](E+A) =E+A+E—A一2E. (2)f(f(A))=(E一f(A))(E+f(A))
—1
=[E一(E—A)(E+A)
—1
][E+(E—A)(E+A)
—1
]
—1
=[(E+A)一(E—A)](E+A)
—1
[E+(E—A)(E+A)
—1
]
—1
=2A[E+(E一A)(E+A)
—1
(E+A)]
—1
=2AE(E+A)+(E—A)—]
—1
=2A.(2E)
—1
=A.
解析
转载请注明原文地址:https://jikaoti.com/ti/DVSRFFFM
0
考研数学三
相关试题推荐
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
甲、乙两地相距skm,汽车从甲地匀速地行驶到乙地,已知汽车每小时的运输成本(以元为单位)由可变部分与固定部分组成:可变部分与速度(单位为km/h)的平方成正比,比例系数为b;固定部分为a元.试问为使全程运输成本最小,汽车应以多大速度行驶?
设A是m×n阶矩阵,下列命题正确的是().
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a。试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设随机变量X,Y相互独立,它们的分布函数为FX(x),FY(y),则Z=min(X,Y)的分布函数为().
由题设,设原积分中两部分的积分区域分别如右图所示,则原式[*]
利用斯托克斯公式把定向曲面积分化为曲线积分,并计算积分值,其中A与∑分别如下:(1)A=xyzi+xj+exyk,∑为上半球面的上侧;(2)A=(y-z)i+yzj-xzk,∑为立方体[0,2]×[0,2]×[0,2]的表面外侧去掉xy面上的那个底面.
设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C为_____.
为了实现利润最大化,厂商需要对某商品确定其定价模型.设Q为该商品的需求量,p为价格,MC为边际成本,η为需求弹性(η>0).(I)证明定价模型为P=(Ⅱ)若该商品的成本函数为C(Q)=1600+Q2,需求函数为Q=40一P,试由(I)中的定价模
设A=(α1,α2,α3,α4,α4),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
随机试题
在乡、村庄规划区内进行乡镇企业、乡村公共设施和公益事业建设的,建设单位或者个人应当向乡、镇人民政府提出申请,由乡、镇人民政府报城市、县人民政府城乡规划主管部门核发( )。
某住宅项目,用户入住后,对原设计的功能不满意,进行了局部改动,由此造成的质量缺陷处理费用应由()承担。
某企业拟进行一项存在一定风险的完整工业项目投资,有甲、乙两个方案可供选择:已知甲方案净现值的期望值为1000万元,标准离差为300万元;乙方案净现值的期望值为1200万元,标准离差为330万元。下列结论中正确的是()。
下列各项中,制造业企业应计入其他业务成本的有()。
莫扎特在歌剧《费加罗的婚礼》中塑造了第三等人物()的形象。
一个人学会一门语言是通过犯错误并纠正错误来实现的。
下列属于督察警察职责的是()
公理是指依据人类理性的不证自明的基本事实,经过人类长期反复实践的考验,不需要再加证明的基本命题。定理是建立在公理和假设基础上,经过严格的推理和证明得到的,它能描述事物之间内在关系,定理具有内在的严密性,不能存在逻辑矛盾。根据上述定义,下列描述属于公理的是:
thinktank
1956年起,毛泽东开始探索中国特色社会主义建设道路。与此相联系。毛泽东提出了一系列新思想,主要有
最新回复
(
0
)