首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(I):α1,α2,…,αn;(II):γ1,γ2,…,γn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则( ).
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(I):α1,α2,…,αn;(II):γ1,γ2,…,γn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则( ).
admin
2019-01-06
44
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
),B=(β
1
,β
2
,…,β
n
),AB=(γ
1
,γ
2
,…,γ
n
),记向量组(I):α
1
,α
2
,…,α
n
;(II):γ
1
,γ
2
,…,γ
n
;(Ⅲ):γ
1
,γ
2
,…,γ
n
,若向量组(Ⅲ)线性相关,则( ).
选项
A、(Ⅰ),(Ⅱ)都线性相关
B、(Ⅰ)线性相关
C、(Ⅱ)线性相关
D、(Ⅰ),(Ⅱ)至少有一个线性相关
答案
D
解析
若α
1
,α
2
,…,α
n
线性无关,β
1
,β
2
,…,β
n
线性无关.则r(A)=n,r(B)=n,
于是r(AB)=n.因为γ
1
,γ
2
,…,γ
n
线性相关,所以r(AB)=r(γ
1
,γ
2
.…,γ
n
)<n,
故α
1
,α
2
,…,α
n
与β
1
,β
2
,…,β
n
至少有一个线性相关,选(D).
转载请注明原文地址:https://jikaoti.com/ti/DFIRFFFM
0
考研数学三
相关试题推荐
已知A是m×n矩阵,B是n×p矩阵,如AB=C,且r(c)=m,证明A的行向量线性无关.
设向量组α,β,γ线性无关,α,β,δ线性相关,则
设二维连续型随机变量(x,Y)在区域D={(x,y)|x2+y2≤1}上服从均匀分布.(I)问X与Y是否相互独立;(Ⅱ)求X与Y的相关系数.
设随机变量X和Y独立,并且都服从正态分布N(μ,σ2),求随机变量z=min(X,Y)的数学期望.
已知函数y=y(x)满足等式y’=x+y,且y(0)=1,试讨论级数的收敛性.
(00年)在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电.以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于
(92年)设曲线y=e-χ(χ≥0)(1)把曲线y=e-χ,χ轴,y轴和直线χ=ξ(ξ>0)所围成平面图形绕χ轴旋转一周,得一旋转体,求此旋转体体积V(ξ);求满足V(a)=V(ξ)的a.(2)在此曲线上找一点,使过该点的切线与两个坐标
(99年)设f(χ)是连续函数,F(χ)是f(χ)的原函数,则
设n阶矩阵A正定,X=(χ1,χ2,…,χn)T.证明:二次型f(χ1,χ2,…,χn)=为正定二次型.
交换二重积分I=∫01dxf(x,y)dy的积分次序,其中f(x,y)为连续函数.
随机试题
()是一种资本化的租赁,在分析长期偿债能力时,已经包含在债务比率指标计算之中。
肝豆状核变性先天性睾丸发育不全综合征
参与炎症作用的细胞因子是
240mm厚承重墙体最上一皮砖的砌筑,应采用的砌筑方法为()
我国规划体系中,企业自主编制的发展规划()。
下列物理现象中属于液化的有()。
CiscoPIX525防火墙能够进行口令恢复操作的模式是()。
扩展名为.dbc的文件是______。
Specialwordsusedintechnicaldiscussion______.Thewriterofthearticlewas,undoubtedly______.
A、Wool.B、Leather.C、Glass.D、Paper.D男士问Isitmadeofleatherorpaper?女士回答说Itismadeofpaper。
最新回复
(
0
)