首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Aχ=0的基础解系,且矩阵A-6E不可逆.则 (Ⅰ)求齐次线性方程组(A-6E)χ=0的通解: (Ⅱ)求正交变换χ=Qy将二次型χTAχ化为标准形;
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Aχ=0的基础解系,且矩阵A-6E不可逆.则 (Ⅰ)求齐次线性方程组(A-6E)χ=0的通解: (Ⅱ)求正交变换χ=Qy将二次型χTAχ化为标准形;
admin
2017-11-30
42
问题
设A为3阶实对称矩阵,α
1
=(1,-1,-1)
T
,α
2
=(-2,1,0)
T
是齐次线性方程组Aχ=0的基础解系,且矩阵A-6E不可逆.则
(Ⅰ)求齐次线性方程组(A-6E)χ=0的通解:
(Ⅱ)求正交变换χ=Qy将二次型χ
T
Aχ化为标准形;
(Ⅲ)求(A-3E)
100
。
选项
答案
(Ⅰ)因为矩阵A-6E不可逆,所以λ=6是矩阵A的一个特征值;另一方面,因为α
1
,α
2
是齐次线性方程组Aχ=0的基础解系,所以λ=0是矩阵A的二重特征值,所以A的特征值为0,0,6。 齐次线性方程组(A-6E)χ=0的通解是矩阵A的属于特征值λ=6的特征向量。因为A为3阶实对称矩阵,从而属于不同特征值的特征向量正交。 设α
3
=(χ
1
,χ
2
,χ
3
)
T
是矩阵A的属于特征值λ=6的一个特征向量,则 (α
1
,α
3
)=0,(α
2
,α
3
)=0, 解得α
3
=(-1,-2,1)
T
,所以齐次线性方程组(A-6E)χ=0的通解为kα
3
,k为任意常数。 (Ⅱ)下面将向量组α
1
,α
2
,α
3
正交化。令 β
1
=α
1
,β
2
=α
2
-[*]β
1
=(-1,0,-1)
T
,β
3
=α
3
下面将向量组β
1
,β
2
,β
3
,单位化。令 [*] 则二次型χ
T
Aχ在正交变换χ=Qy下的标准型为6y
3
2
。 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/AhVRFFFM
0
考研数学一
相关试题推荐
设,求y’.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设A=E一ααT,其中α为n维非零列向量.证明:A2=A的充分必要条件是α为单位向量;
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设随机变量X,Y独立同分布,且设随机变量U=max{X,Y),V=min{X,Y).求二维随机变量(U,V)的联合分布;
设随机变量X1,X2,X3,X4独立同分布,且(i=1,2,3,4),求X=的概率分布.
设一电路由三个电子元件串联而成,且三个元件工作状态相互独立,每个元件的无故障工作时间服从参数为λ的指数分布,设电路正常工作的时间为T,求T的分布函数.
设一设备在时间长度为t的时间内发生故障的次数N(t)~P(λt).求相继两次故障之间时间间隔T的概率分布;
设A,B为三阶矩阵,且AB=A—B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA;
椭球面S1是椭圆=1绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆=1相切的直线绕x轴旋转而成.(1)求S1及S2的方程.(2)求S1与S2之间的立体体积.
随机试题
心功能分级的主要依据是
由于口腔疾病引起的各种损伤与障碍导致的功能丧失包括
A.地骨皮B.牡丹皮C.杜仲D.黄柏E.桑白皮断面不平坦,外层黄棕色,内层灰白色的药材是
梁ABC的弯矩图如图5—23所示,根据梁的弯矩图,可以断定该梁截面B处()。
出口人完成装运后,凭以向船公司换取已装船提单的单据是()。
2017年12月6日,广东省农村信用社联合社与广东粤财投资控股有限公司举行战略合作签约仪式。在签约仪式上,()也分别与粤财控股属下的普惠金融融资担保股份有限公司签订战略合作协议,就融资担保业务开展全面合作,此举将有助于农合机构拓宽支农支小服务范围,深
简述中学数学教学的基本原则.
DothefollowingstatementsagreewiththeclaimsofthewriterinReadingPassage3?Inboxes31-36onyouranswersheet,write
Associetychanges,socialvaluesandlinguisticvaluesbegintodiverge.Languagecontainstraditionalvaluesthisiswhichis
Whatdoesthewomanthinkoftheroommate’smusic?
最新回复
(
0
)