设f(x)在[0,1]上二阶可导,f(1)=1,且,证明:存在ξ∈(0,1),使得f"(ξ)一2f’(ξ)+2=0.

admin2019-08-23  21

问题 设f(x)在[0,1]上二阶可导,f(1)=1,且,证明:存在ξ∈(0,1),使得f"(ξ)一2f’(ξ)+2=0.

选项

答案由[*]=1得f(0)=0,f’(0)=1, 由拉格朗日中值定理,存在c∈(0,1),使得f’(c)=[*] 令φ(x)=e-2x[f’(x)一1], 由f’(0)=f’(c)=1得φ(0)=φ(c)=0, 由罗尔定理,存在ξ∈(0,c)[*](0,1),使得φ’(ξ)=0, 而φ’(x)=一2e-2x[f’(x)一1]+e-2xf"(x)=e-2x[f"(x)一2f’(x)+2],因为e-2x≠0,所以f"(ξ)一2f’(ξ)+2=0.

解析
转载请注明原文地址:https://jikaoti.com/ti/A0QRFFFM
0

最新回复(0)