首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
admin
2018-09-25
44
问题
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
-S
2
恒为1,求此曲线y=y(x)的方程.
选项
答案
曲线y=y(x)上点P(x,y)处的切线方程为Y-y=y’(x)(X=x),它与x轴的交点为[*]由于y’(x)>0,y(0)=1,从而y(x)>0,于是 [*] 又S
2
=∫
0
x
y(t)dt,由条件2S
1
-S
2
=1,知 [*] 两边对x求导得 [*] 即yy’’=(y’)
2
.令p=y’,则上述方程可化为 [*] 于是y=e
C
2
x+C
2
. 注意到y(0)=1,并由(*)式得y’(0)=1.由此可得C
1
=1,C
2
=0,故所求曲线的方程是y=e
x
.
解析
转载请注明原文地址:https://jikaoti.com/ti/5U2RFFFM
0
考研数学一
相关试题推荐
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
已知方程组总有解,则λ应满足__________.
设L为平面上分段光滑的定向曲线,P(x,y),Q(x,y)连续.(Ⅰ)L关于y轴对称(图9.40),则其中L1是L在右半平面部分.(Ⅱ)L关于x轴对称(图9.41),则其中L1是L在上半平面部分.
已知求x100.
设A是n阶矩阵,A2=A,r(A)=r;证明A能对角化,并求A的相似标准形.
解下列微分方程:(Ⅰ)y″-7y′+12y=x满足初始条件y(0)=的特解;(Ⅱ)y″+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)+y″+y′+y=0的通解.
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数且σ>0,设Z=X-Y。(Ⅰ)求Z的概率密度f(z;σ2);(Ⅱ)设Z1,Z2,…,Zn为取自总体Z的简单随机样本,求σ2的最大似然估计量
极限xyln(x2+y2)()
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=-1,求极限
随机试题
控制破伤风患者痉挛的最主要措施是()。
工序质量控制就是对( )的控制。
企业发生的年度亏损,在连续()年内可以税前利润弥补。
TheCopandtheAnthemiswrittenby______.
美国国债问题和欧洲债务危机是影响全球股市的两大主要因素。美国信用评级下调显然是__________,但不是真正的原因。美国信用评级下调只不过__________出了美国面临的问题,这需要很长时间才能解决。依次填入画横线部分最恰当的一项是()。
11338×25593的值为()。
对于序列(49,38,65,97,76,13,27,50)按非递减方式排序,采用步长为4的希尔排序,第一次排序结果为()。
有一商家为了推销其家用电脑和网络服务,目前正在大力开展网络消费的广告宣传和推广促销。经过一定的市场分析,他们认为手机用户群是潜在的网络消费的用户群,于是决定在各种手机零售场所宜传、推销他们的产品。结果两个月下来,效果很不理想。以下哪项如果为真,最有助于解释
Growinggrapesingreenhousescontainingairenrichedwithcarbondioxideincreasescropyields,aneffectthatisenhancedwhen
"Doorsandwindowscan’tkeepthemout;airportimmigrationofficerscan’tstopthemandtheInternetisanabsolutereproductio
最新回复
(
0
)