首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X的概率分别为 其中θ(0<θ<)是未知参数,利用总体X的如下样本值 3,1,3,0,3,1,2,3 求θ的矩估计值和最大似然估计值.
设总体X的概率分别为 其中θ(0<θ<)是未知参数,利用总体X的如下样本值 3,1,3,0,3,1,2,3 求θ的矩估计值和最大似然估计值.
admin
2018-07-30
30
问题
设总体X的概率分别为
其中θ(0<θ<
)是未知参数,利用总体X的如下样本值
3,1,3,0,3,1,2,3
求θ的矩估计值和最大似然估计值.
选项
答案
先求矩估计 ∵E(X)=0×θ
2
+1×2θ(1-θ)+2×θ
2
+3×(1-2θ)=3-4θ ∴[*] 由题目所给的样本值算得 [*](3+1+3+0+3+1+2+3)=2 代入得[*]. 又求最大似然估计,本题中n=8,样本值χ
1
,…,χ
8
由题目所给,故似然函数为 L(θ)=[*]P{X=χ
i
}=P{X=0}[P(X=1)]
2
P(X=2)[P(X=3)]
4
=θ
2
.[2θ(1-θ)]
2
.θ
2
.(1-2θ)
4
=4θ
6
(1-θ)
2
(1-2θ)
4
∴lnL(θ)=ln4+6lnθ+2ln(1-0)+4ln(1-2θ) [*] 令[*]lnL(θ)=0,得24θ
2
-280+6=0, 解得θ=[*],而[*]不合题意,舍去, 故得θ的最大似然估计值为[*].
解析
转载请注明原文地址:https://jikaoti.com/ti/4h2RFFFM
0
考研数学一
相关试题推荐
设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为___________.
设事件A,B,C两两独立,满足ABC=,则P(A)=___________.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
没总体X~N(μ,σ2),X1,X2,…,Xn+1为总体X的简单随机样本,记服从的分布.
设总体X服从正态分布N(μ,σ2)(σ>0),X1,X2,…,Xn为来自总体X的简单随机样本.令Y=|Xi一μ|,求Y的数学期望与方差.
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令Y=Xm+k.求:(1)D(Y),D(Z);(2)ρXY.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为一.(1)求E(Z),D(Z);(2)求ρXY;(3)X,Z是否相互独立?为什么?
下列事件中与A互不相容的事件是
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
随机试题
国标规定:滚动轴承的代号由前(游隙系列和精度等级)、中(轴承型号)、后(补充代号)三段组成。()
Wehadapartylastweek,anditwasalotoffun,solet’shave______one.
林某,男,67岁,伤口局部有炎症表现,经病原学检测发现为链球菌感染引起,分析原因是由于医生在给上一个链球菌感染者换药后没有清洁双手,直接给林某换药,导致感染的发生,像这种医院感染的传播途径属于()。
不属于注册建造师享有的权利是()。
法国A公司是国际知名的电气跨国公司,十年前通过设立中国分公司进入中国市场。针对中国成为世界加工厂和世界经济的有力推动者之一的趋势不断加强,A公司开始着手研究在中国的发展战略。经过十年充分的战略情报研究和战略保障准备,从2005年开始在中国实施并购。在
X公司系公开A股的上市公司,主要生产销售家电产品。2009年12月,ABC会计师事务所接受X公司的委托审计其2009年度财务报表和合并财务报表。注册会计师A和B接受会计师事务所的指派担任该项目的负责人。资料一:注册会计师A和B决定对X公司的期末存货
设A1,A2,A3,A4,A5是平面上给定的5个不同点,则使=0成立的点M的个数为()
行政机关对申请人提出的行政许可申请的处理,下列做法不正确的是()。
张某欠李某10万元钱,逾期未还,李某几次催要未果。一日,李某发现张某将自己仅有的一辆“桑塔纳”牌轿车(八成新)以1万元的价格卖给知情人赵某,则李某可以行使()以保障自己的债权不受侵害。
求曲线y3+y2=2x在点(1,1)处的切线方程与法线方程.
最新回复
(
0
)