首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2006年)设函数f(u)在(0,+∞)内具有二阶导数,且满足等式 (I)验证 (Ⅱ)若f(1)=0,f′(1)=1,求函数f(u)的表达式。
(2006年)设函数f(u)在(0,+∞)内具有二阶导数,且满足等式 (I)验证 (Ⅱ)若f(1)=0,f′(1)=1,求函数f(u)的表达式。
admin
2018-03-11
32
问题
(2006年)设函数f(u)在(0,+∞)内具有二阶导数,且
满足等式
(I)验证
(Ⅱ)若f(1)=0,f′(1)=1,求函数f(u)的表达式。
选项
答案
(I)设[*]则 [*] (Ⅱ)令f′(u)=p,则[*] 两边积分得 lnp=一lnu+lnC
1
, 即[*]亦即[*] 由f′(1)=1可得C
1
=1。所以有[*]两边积分得f(u)=lnu+C
2
。 由f(1)=0,可得C
2
=0,故f(u)=lnu,u>0。
解析
转载请注明原文地址:https://jikaoti.com/ti/49VRFFFM
0
考研数学一
相关试题推荐
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λs,λ1,…,λ2,使(k1+λ1)α1+(k2+λ2)α2+…+(k2+λ1)β1+(k1一λ1)β1+…+(ks一λs)βs=0,则
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设随机变量X的分布函数为F(x),密度函数为f(x)=af1(x)+bf2(x),其中f2(x)是正态分布N(0,σ2)的密度函数,f2(x)是参数为λ的指数分布的密度函数,已知,则()
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:在使用的最初150小时内烧坏的电子管数Y的分布律;
设f(x)的导数在x=a处连续,又=一1,则
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(1)存在ξ∈(0,1),使得f(ξ)=1一ξ;(2)存在两个不同的点η,ζ∈(0,1),使得f’(n)f’(ξ)=1.
设二元函数f(x,y)在单位圆区域x2+y2≤1上有连续的偏导数,且在单位圆的边界曲线上取值为零,f(0,0)=1.求极限,其中区域。为圆环域ε2≤x2+y2≤1.
(1999年)求其中a,b为正的常数,L为从点A(2a,0)沿曲线到点O(0,0)的弧.
(1998年)设f,φ具有二阶连续导数,则
(1999年)设∑为椭球面的上半部分,点P(x,y,z)∈∑,∏为∑在点P处的切平面,ρ(x,y,z)为点O(0,0,0)到平面∏的距离,求
随机试题
角接运行的电动机必须采用带有________保护的热继电器作过载保护。
简述科技环境对企业国际营销的影响。
A.雌激素内膜增生方案B.孕激素内膜萎缩方案C.孕激素撤退方案D.雌一孕激素序贯疗法E.雌一孕激素合并疗法青春期功血,周期紊乱,量不多,为调节周期,适于用
下列属于民事责任承担方式的是()。
从本质上讲,商标权的价值主要取决于()。
西伯利亚大陆桥运输包括()等运输方式。
若干学校联合进行团体操表演,参演学生组成一个方阵,已知方阵由外到内第二层有104人,则该方阵共有学生()人。
阅读下列材料,回答问题:材料一科目者,沿唐、宋之旧,而稍变其试士之法,专取四子书及易、书、诗、春秋、礼记五经命题试士。盖太祖与刘基所定。其文略仿宋经义,然代古人语气为之,体用排偶,谓之八股,通谓之制义。三年大比,以诸生试之直省,日乡试。
阅读文章,完成下列5题。我是一只老狗,已到苟延残喘之年,即将离开这个世界。可是,在这个时刻,我想把我一生中悟出的道理讲出来,希望于狗和人的后代们有益。当然,这是狗的道理。我从很小的时候一一也就是还不懂事的时候起,就跟随着主人。我曾经以为
Howeverimportantwemayregardschoollifetobe,thereisno【B1】______tothefactthatchildrenspendmoretimeathomethan
最新回复
(
0
)