首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,a1,a2,…,an是n维列向量,其中an≠0,若Aa1=a2,Aa2=a3,…,Aan一1=an,Aan=0. (Ⅰ)证明a1,a2,…,an线性无关; (Ⅱ)求A的特征值、特征向量.
设A是n阶矩阵,a1,a2,…,an是n维列向量,其中an≠0,若Aa1=a2,Aa2=a3,…,Aan一1=an,Aan=0. (Ⅰ)证明a1,a2,…,an线性无关; (Ⅱ)求A的特征值、特征向量.
admin
2015-12-22
30
问题
设A是n阶矩阵,a
1
,a
2
,…,a
n
是n维列向量,其中a
n
≠0,若Aa
1
=a
2
,Aa
2
=a
3
,…,Aa
n一1
=a
n
,Aa
n
=0.
(Ⅰ)证明a
1
,a
2
,…,a
n
线性无关;
(Ⅱ)求A的特征值、特征向量.
选项
答案
(1)利用线性无关的定义证之;(2)利用相关矩阵的性质求之. 解 (1)令 k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0. ① 由题设 Aα
1
=α
2
, Aα
2
=α
3
, …, Aα
n一1
=α
n
, 有 A
n
α
1
=A
n一1
α
2
=…=Aa
n
=0. 将A
n一1
左乘式①,得k
1
α
n
=0.由于α
n
≠0,故k
1
=0. 再依次用A
n一2
,A
n一3
,…乘式①,可得 k
2
=k
3
=…=k
n
=0, 所以α
1
,α
2
,…,α
n
线性无关. (2)由于 A[α
1
,α
2
,…,α
n
]=[α
2
,α
3
,…,α
n
,0] [*] 因为α
1
,α
2
,…,α
n
线性无关,矩阵[α
1
,α
2
,…,α
n
]可逆,从而 [*] 得知A的特征值全为0.又因 秩(A)=秩(B)=n一1, 所以Ax=0的基础解系由n一秩(A)=1个向量组成,由Aα
n
=0·α
n
知,A的线性无关的特征向量为α
n
,全部特征向量为kα
n
,k≠0为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/2PriFFFM
0
考研数学二
相关试题推荐
世界非物质文化遗产资源丰富,形式多样,地域特色鲜明。下列非物质文化遗产中全部属于亚洲的是()。
压强:面积()
附条件的法律行为:指效力的开始或终止取决于将来确定事实的发生或不发生的法律行为。根据上述定义,下列行为中属于附条件的法律行为的是()。
四年级一班选班长,每人投票从甲、乙、丙三个候选人中选一人,已知全班共52人,并且在计票过程中的某一时刻,甲得到17票,乙得到16票,丙得到11票。如果得票最多的候选人将成为班长。甲最少再得多少票就能够保证当选?()
某学校准备重新粉刷升国旗的旗台,该旗台由两个正方体上下叠加而成,边长分别为1米和12米。问需要粉刷的面积为:
2012年,某区60岁以上户籍老年人口(以下简称户籍老年人口23.61万,占户籍总人口的22.6%。2012年户籍老年人口规模比2000年翻了一番,占户籍总人口的比重比2000年上升了5.4个百分点。80岁以上的户籍高龄老年人口达到3.89万人,人口规模比
在进行线性回归时假设误差等分散,下列哪种情况下误差等分散?()
《合同法》第68条规定:“应当先履行债务的当事人,有确切证据证明对方有下列情形之一的,可以中止履行:……”民法理论称此种权利为()。
设A,B都是n阶正定矩阵,P为n×m矩阵,证明:PT(A+B)P正定的充分必要条件是r(P)=m.
下列命题①若f(x)在x=x0存在左、右导数且f’+(x0)≠f’—(x0),则f(x)在x=x0处连续②若函数极限③若数列极限④若不存在中正确的个数是_________。
随机试题
“人造美女”是最近非常抢眼的一个词。爱美之心人皆有之,丑小鸭变成白天鹅的梦想,通过整形美容手术就可以在短时间内成为现实,对每一位爱美女性来说,都是一种诱惑。目前,整形美容已成为诸多爱美女性增加个人靓丽指数的时尚选择。与此同时,也有许多女性为此付出了惨痛的代
在Word2010中,关于快速表格样式的用法,下列说法正确的是
霍奇金病最常见的首发症状是
有关小儿身长的说法不正确的是
构成调查问卷的主体部分是
能经乳汁排出可能引起婴儿中毒的生产性毒物有
设计概念结构时,通常使用的方法有()。
社会主义市场经济运行的根本目标是实现()。
在考生文件夹下TING文件夹中建立一个名为“CHE”的新文件夹。
CATVisashortwayofsaying"communityantenna(天线)television".But"cabletelevision"isthetermmostpeopleuse.Cabletelev
最新回复
(
0
)