已知二次型f(x1,x2,x3)=+2(1+a)x1x2的秩为2。 (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化为标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解。

admin2020-03-05  15

问题 已知二次型f(x1,x2,x3)=+2(1+a)x1x2的秩为2。
(Ⅰ)求a的值;
(Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化为标准形;
(Ⅲ)求方程f(x1,x2,x3)=0的解。

选项

答案(Ⅰ)二次型矩阵A=[*]。二次型的秩为2,则二次型矩阵A的秩也为2,从而 |A|=[*]=-8a=0, 因此a=0。 (Ⅱ)由(Ⅰ)中结论a=0,则A=[*],由特征多项式 |λE-A|=[*]=(λ-2)[(λ-1)2-1]=λ(λ-2)2得矩阵A的特征值λ12=2,λ3=0。 当λ=2,由(2E-A)x=0得特征向量α1=(1,1,0)T,α2=(0,0,1)T。 当λ=0,由(0E-A)x=0得特征向量α3=(1,-1,0)T。 容易看出α1,α2,α3已两两正交,故只需将它们单位化: [*] 那么令Q=(γ1,γ2,γ3)=[*],则在正交变换x=Qy下,二次型f(x1,x2,x3)化为标准形f(x1,x2,x3)=xTAx=yTΛy=[*] (Ⅲ)由f(x1,x2,x3)= [*] 所以方程f(x1,x2,x3)=0的通解为k(1,-1,0)T,其中k为任意常数。

解析
转载请注明原文地址:https://jikaoti.com/ti/1wCRFFFM
0

最新回复(0)