首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求线性方程组的通解,并求满足条件χ12=χ22的所有解.
求线性方程组的通解,并求满足条件χ12=χ22的所有解.
admin
2016-10-21
35
问题
求线性方程组
的通解,并求满足条件χ
1
2
=χ
2
2
的所有解.
选项
答案
对增广矩阵作初等行变换,有 [*] 方程组的解:令χ
3
=0,χ
4
=0得χ
2
=1,χ
1
=2.即α=(2,1,0,0)
T
. 导出组的解: 令χ
3
=1,χ
4
=0得χ
2
=3,χ
1
=1.即η
1
=(1,3,1,0)
T
; 令χ
3
=0,χ
4
=1得χ
2
=0,χ
1
=-1.即η
2
=(-1,0,0,1)
T
. 因此方程组的通解是:(2,1,0,0)
T
+k
1
(1,3,1,0)
T
+k
2
(-1,0,0,1)
T
. 而其中满足χ
1
2
=χ
2
2
的解,即(2+k
1
-k
2
)
2
=(1+3k
1
)
2
. 那么2+k
1
-k
2
=1+3k
1
或2+k
1
-k
2
=-(1+3k
1
), 即k
2
=1-2k
1
或k
2
=3+4k
1
. 所以(1,1,0,1)
T
+k(3,3,1,-2)
T
和(-1,1,0,3)
T
+k(-3,3,1,4)
T
为满足χ
1
2
=χ
2
2
的所有解.
解析
转载请注明原文地址:https://jikaoti.com/ti/znzRFFFM
0
考研数学二
相关试题推荐
设直线y=ax与抛物线y=x2所围成图形的面积为S1,它们与直线x=1所围成的图形面积为S2,并且a<1.求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积。
设f(x)在[0,+∞)上连续,且∫01f(x)dx<-,证明:至少存在一个ξ∈(0,+∞),使得f(ξ)+ξ=0
设f(x)的一阶导数在[0,1]上连续,f(0)=f(1)=0求证:|∫01f(x)dx|≤|f’(x)|
已知曲线在点(x0,y0)处有公共切线,求:常数a及切点(x0,y0).
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k.证明:当k>0时,f(x)在[a,b]上连续;证明:当k>1时,f(x)=常数.
求差分方程yx+1+2yx=x2+4x的通解。
当x→+∞时,下列中的变量,哪些是无穷小量?哪些是无穷大量?哪些既不是无穷小量也不是无穷大量?
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠O,使得AB=O,则().
随机试题
你怎么看待“禁酒令”?
消化系统肿瘤转移至肝脏的主要途径是
A.造血系统B.呼吸系统C.心血管系统D.消化系统E.神经系统急性苯中毒主要损害
A.临睡时B.睡觉时服用C.饭后D.口服E.睡觉时
火灾爆炸的预防包括防火和防爆两方面。下列措施中,不符合防爆基本原则的是()。
幼儿园定期或不定期地向家长开放,并邀请家长来园观摩和参观的活动形式是()。
教育行政复议程序基本上分为()五个步骤。
在总线上,()信息的传输为单向传输。Ⅰ.地址Ⅱ.数据Ⅲ.控制Ⅳ.状态
甲将一栋楼房出租给乙,租期3年。1年后,甲向丙借款100万元,期限为1年,以该楼房作为抵押物并办妥相关抵押登记手续。借款期限届满,甲无力偿还债务,丙遂向法院起诉,要求拍卖该栋楼房以实现抵押权,并主张优先购买权。乙得知后也主张优先购买权,经评估,该栋楼房价值
Brazil’scommercewithAfricahasbiginvestmentinallofthefollowingEXCEPT
最新回复
(
0
)