设函数f(x)在[0,1]上二阶可导,且f(0)=fˊ(0)=fˊ(1)=0,f(1)=1. 求证:存在ξ∈(0,1),使|fˊˊ(ξ)|≥4.

admin2016-09-13  42

问题 设函数f(x)在[0,1]上二阶可导,且f(0)=fˊ(0)=fˊ(1)=0,f(1)=1.
求证:存在ξ∈(0,1),使|fˊˊ(ξ)|≥4.

选项

答案把函数f(x)在x=0展开成带拉格朗日型余项的一阶泰勒公式,得 f(x)=f(0)+fˊ(0)x+[*]fˊˊ(ξ1)x2 (0<ξ1<x). 在公式中取x=[*],利用题设可得[*] 把函数f(x)在x=1展开成泰勒公式,得 f(x)=f(1)+fˊ(1)(x-1)+[*]fˊˊ(ξ2)(x-1)2 (x<ξ2<1). 在公式中取x=[*],利用题设可得[*] 两式相减消去未知的函数值f([*])即得 fˊˊ(ξ1)-fˊˊ(ξ2)=8=>|fˊˊ(ξ1)|+|fˊˊ(ξ2)|≥8. 从而,在ξ1和ξ2中至少有一个点,使得在该点的二阶导数绝对值不小于4,把该点取为ξ,就有ξ∈(0,1),使|fˊˊ(ξ)|≥4.

解析
转载请注明原文地址:https://jikaoti.com/ti/zGxRFFFM
0

最新回复(0)