首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于AT的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于AT的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B.
admin
2017-04-24
31
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,且α
1
=(1,一1,1)
T
是A的属于A
T
的一个特征向量.记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
(Ⅰ)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B.
选项
答案
(Ⅰ)记矩阵A的属于特征值λ
i
的特征向量为α
i
(i=1,2,3),由特征值的定义与性质,有A
k
α
i
=λ
i
k
α
i
(i=1,2,3,k=1,2,…),于是有 Bα
1
=(A
5
一 4A
3
+E)α
1
=(λ
1
5
一 4λ
1
3
+1)α
1
=一2α
1
因α
1
≠0,故由定义知一2为B的一个特征值且α
1
为对应的一个特征向量.类似可得 Bα
2
=(λ
2
5
一 4λ
2
3
+1)α
2
=α
2
Bα
3
=(λ
3
5
一4λ
3
3
+1)α
3
=α
3
因为A的全部特征值为λ
1
,λ
2
,λ
3
,所以B的全部特征值为λ
i
5
一4λ
i
3
+1(1=1,2,3),即B的全部特征值为一2,1,1. 因一2为B的单特征值,故B的属于特征值一2的全部特征向量为k
1
α
1
,其中k
1
是不为零的任意常数. 设x= (x
1
,x
2
,x
3
)
T
为B的属于特征值1的任一特征向量,因为A是实对称矩阵,所以B也是实对称矩阵.因为实对称矩阵属于不同特征值的特征向量正交,所以有(x
1
,x
2
,x
3
)α
1
=0,即 x
1
一
2
+x
3
=0 解得该方程组的基础解系为 ξ
2
=(1,1,0)
T
, ξ
3
=(一1,0,1)
T
故B的属于特征值1的全部特征向量为k
2
ξ
2
+ k
3
ξ
3
,其中k
2
,k
3
为不全为零的任意常数. (Ⅱ)由(Ⅰ)知α
1
,ξ
2
,ξ
3
为B的3个线性无关的特征向量,令矩阵 [*]
解析
本题主要考查特征值与特征向量的定义与性质、矩阵相似对角化的概念与应用.
本题中方阵B=f(A)为方阵A的多项式,其中多项式f(t)=t
5
—4t
3
+1.我们知道,若λ为方阵A的一个特征值,则(λ)为f(A)=B的一个特征值.但是,为什么能由A的全部特征值为λ
1
,λ
2
,λ
3
,而断言f(λ
1
), f(λ
2
),f(λ
3
)为B的全部特征值呢?对此问题,可有以下几种推导方法:
(1)由于属于互不相同特征值的特征向量线性无关,知向量组α
1
,α
2
,α
3
线性无关,从而知α
2
,α
3
线性无
关,再由Bα
2
=α
2
,Bα
3
=α
3
,知1为B的特征值,且对应的线性无关特征向量至少有2个,故知1至少为B的二重特征值.又因3阶矩阵B的全部特征值(重特征值按重数计算)有且仅有3个,故知B的全部特征值为一2,1,1.
(2)由3阶矩阵A有3个互不相同的特征值1,2,一2,或由A为实对称矩阵,知A可相似对角化,即存在可逆矩阵Q,使
于是有
Q
一1
BQ=Q
一1
(A
5
一4A
3
+E)Q=Q
一1
A
5
Q一4Q
一1
A
3
Q+E
=(Q
一1
AQ)
5
一4(Q
一1
AQ)
3
+E=D
5
一4D
3
+E
即矩阵B与对角矩阵M相似,由于相似矩阵有相同的特征值,故知B的全部特征值为一2,1,1.
(3)也可以直接利用下面更为一般的结论:设n阶矩阵A(不一定为实对称矩阵)的全部特征值为λ
1
,λ
2
,…,λ
n
,则对于任一多项式f(t),n阶矩阵f(A)的全部特征值为f(λ
1
),f(λ
2
),…,f(λ
n
).
另外,需要指出,由方程x
1
一x
2
+x
3
=0所求基础解系,即B的属于特征值1的线性无关特征向量虽然不是唯一的,从而所得相似变换矩阵P不是唯一的,但由B=Pdiag(一2,1,1)P
一1
所计算出的矩阵B却是唯一的,例如,也可由x
1
一x
2
+x
3
=0解得B的属于特征值1的线性无关特征向量为(1,1,0)
T
,(一1,1,2)
T
,从而可取相似对角化的变换矩阵为
转载请注明原文地址:https://jikaoti.com/ti/yhzRFFFM
0
考研数学二
相关试题推荐
微分方程y’+ytanx=cosx的通解为________。
求微分方程ylnydx+(x-lny)dy=0的通解。
求微分方程的通解。
验证y=C1x5+lnx(C1,C2是任意常数)是方程x2y"-3xy’-5y=x2lnx的通解。
设X1,X2均服从参数为λ的指数分布,且相互独立,求X1+X2的密度函数.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求n的值;
考虑二次型f=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3,问λ取何值时,f为正定二次型.
随机试题
指导公务员培训工作的理论基础是()
下列铸造作业事故的直接原因中,不属于引起尘毒的原因的是()。
工程观感质量应由验收人员通过()来评定。
【背景资料】某机电安装施工单位承包某造纸厂机电安装工程项目,包括原料处理车间、制浆车间、制纸车间、锅炉房等单位工程,并签订了工程合同。该施工单位项目部已经收到全部工程设计图纸,组织有关人员进行设计图纸审查,参加设计交底后,进行施工预算的编制工作。【问题
根据《建筑法》的规定,建设单位领取施工许可证后因故不能按期开工的,应当向发证机关申请延期;延期以二次为限,每次延期不超过()。
某彩票设有一等奖和二等奖,其玩法为从10个数字中选出4个.如果当期开奖的4个数字组合与所选数字有3个相同则中二等奖,奖金为投注金额的3倍.4个数字完全相同则中一等奖。为了保证彩票理论中奖金额与投注金额之比符合国家50%的规定,则一等奖的奖金应为二等奖的多少
某厂生产的一批产品经质量检验,一等品与二等品的比是5:3,二等品与三等品的比是4:1,则该批产品的合格率(合格品包括一等品和二等品)为(28)。
4G内存相当于多少字节?()
WirwollendasZimmernuraneinenruhig______Studentenvermieten.
WhenLouiseBrownwasbornon25July1978,shekickedoffanera.Thefirst"testtubebaby"isamotherherselfnow,andshe’s
最新回复
(
0
)