首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),b(b)=g(b),证明: (I)存在η∈(a,b),使得f(η)=g(η); (Ⅱ)存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),b(b)=g(b),证明: (I)存在η∈(a,b),使得f(η)=g(η); (Ⅱ)存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
admin
2021-01-25
47
问题
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),b(b)=g(b),证明:
(I)存在η∈(a,b),使得f(η)=g(η);
(Ⅱ)存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
选项
答案
(I)设f(x),g(x)在(a,b)内某点c(c∈(a,b))同时取得最大值,则f(c)=g(c)。此时的c就是所求点η,使得f(η)=g(η)。 若两个函数取得最大值的点不同,则有f(x)=maxf(x),g(d)=maxg(x),故有 f(x)一g(x)>0,g(d)-f(d)<0, 由介值定理,在(c,d)[*](a,b)内肯定存在一点η使f(η)一g(η)=0,即f(η)=g(η)。 (Ⅱ)设F(x)=f(x)-g(x),由题设与(I)的结论知,F(x)在[a,b]上连续,(a,b)内二次可导,且存在η∈(a,b),使F(a)=F(η)=F(b)=0,分别在[a,η]与[η,b]上对F(x)应用罗尔定理可得,存在α∈(a,η),β∈(η,b)使F’(α)=F’(β)=0,所以F’(x)在[α,β]上满足罗尔定理的条件,因此根据罗尔定理知存在ξ∈(α,β)[*](a,b),使F"(ξ)=0,即f"(ξ)=g"(ξ)。
解析
转载请注明原文地址:https://jikaoti.com/ti/y4aRFFFM
0
考研数学三
相关试题推荐
交换积分次序
以y=C1e-2x+C2ex+cosx为通解的二阶常系数非齐次线性微分方程为__________.
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向量α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
设矩阵不可对角化,则a=.
设B是3阶非零矩阵,满足BA=0,则矩阵B=____________.
对于一切实数t,函数f(t)为连续的正函数且可导,又f(-t)=f(t),设g(χ)=∫-aa|χ-t|f(t)dt,a>0,χ∈[-a,a].(Ⅰ)证明g′(χ)单调增加;(Ⅱ)求出使g(χ)取得最小值的χ;(Ⅲ)将g(χ)
(90年)计算二重积分dχdy,其中D是由曲线y=4χ2和y=9χ2在第一象限所围成的区域.
当x→0+时,与等价的无穷小量是
二阶常系数非齐次线性微分方程y’’-2y’-3y=(2x+1)e-x的特解形式为()
设变换,其中z二阶连续可偏导,求常数a.
随机试题
根据傅立叶定律,式中△t是()。
为联合药敏试验协同作用的结果是
下列哪种药物不能在妊娠合并淋菌感染时使用
同一台水泵,在运行中转速由n1变为n2,则其比转数ns值()。
经( )同意,可以由两个以上的承揽人共同完成定作人交付的工作。
下列设备中属于轻小型起重设备的有()。
下面不能用三角板画出的角是()。
患者,女性,64岁,发现左上牙龈菜花样溃疡2个月,病检诊断为“鳞癌Ⅰ级”。检查见溃疡1.5cm×1.5cm大小。X线片示溃疡区牙槽突骨质有破坏,颌面颈部未触及明显肿大淋巴结。该患者应选择的最佳治疗方案为()。
级数的和等于()
spring
最新回复
(
0
)