首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明: (Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b] (Ⅱ)∫aa+∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明: (Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b] (Ⅱ)∫aa+∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
admin
2021-01-25
69
问题
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:
(Ⅰ)0≤∫
a
x
g(t)dt≤(x一a),x∈[a,b]
(Ⅱ)∫
a
a+∫
a
b
g(t)dt
f(x)dx≤∫
a
b
f(x)g(x)dx.
选项
答案
(Ⅰ)由0≤g(x)≤1得 0≤∫
0
x
g(t)dt≤∫
0
x
dt=(x一a) x∈[a,b] (Ⅱ)令F(u)=∫
a
u
f(x)g(x)dx—∫
a
a+∫
a
u
g(t)dt
f(x)dx 只要证明F(b)≥0,显然F(a)=0,只要证明F(u)单调增,又 F’(u)=f(u)g(u)一f(a+∫
a
u
g(t)dt)g(u) =g(u)[f(u)一f(a+∫
a
u
g(t)dt)] 由(Ⅰ)的结论0≤∫
a
x
g(t)dt≤(x-a)知,a≤a+∫
a
x
g(t)dt≤x,即 a≤a+∫
a
u
g(t)dt≤u 又f(x)单调增加,则f(u)≥f(a+∫
a
u
g(t)dt),因此,F’(u)≥0,F(b)≥0. 故 ∫
a
a+∫
a
b
g(t)dt
f(x)dx≤∫
a
b
f(x)g(x)dx.
解析
转载请注明原文地址:https://jikaoti.com/ti/xtaRFFFM
0
考研数学三
相关试题推荐
设A是m×n矩阵,B是n×m矩阵,则()
[2008年]设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则().
某保险公司对多年来的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.[附表]设Φ(x)是标准正态分布函数.写出X的概率分布;
假设随机变量X的绝对值不大于1,P(X=-1)-1/8,P(X=1)=1/4.在事件{|X|<1}出现的条件下,X在(-1,1)内任一子区间上取值的条件概率与该子区间长度成正比,求X的分布函数F(x)=P(X≤x),并画出F(x)的图形.
设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Z=X+Y的方差.
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn则根据列维一林德伯格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn().
一物体以速度v=3t2+2t(m/s)作直线运动,试计算它在t=0到t=3s这段时间内的平均速度.
(2014年)设函数f(u)具有2阶连续导数,z=f(excosy)满足=(4z+excosy)e2x。若f(0)=0,f’(0)=0,求f(u)的表达式。
设函数f(x)对任意的x均满足等式f(1+x)=af(x),且有f’(0)=b,其中a,b为非零常数,则()
下列选项中矩阵A和B相似的是()
随机试题
不是急性左心衰竭常见病因的是
小李准备在校园科技周向同学讲解与黑客技术相关的知识,请根据考生文件夹下“Word素材.docx”中的内容,帮助小李完成此项工作。具体要求如下:将正文第一段落的首字“很”下沉2行。
对于综合判定肿瘤良恶性来说,最关键的是
对单独建造的地下民用建筑的地上部分,其()内装修材料的燃烧性能等级可按照规定降低一级。
语文课程资源包括()两部分。
各级人民代表大会及其常务委员会对公安机关及其人民警察的执法活动的监督权属于(),以宪法和法律为依据,具有极大的权威性。
当代青年承担历史的重任,是社会上富有朝气、充满活力的群体。良好的形象不仅是青年成才的一个重要方面,也是社会对青年的要求。为树立良好形象,广大青年应该做到()
设函数f(x,y)=e2x(x+2y+y2).求函数f(x,y)一e2xy2在条件x+y=1下的极值.
运算符重载时不需要保持的性质是()。
Pour____________parledictateurcetteuniquefois,ellefutplustardaccuséedecollaboration..
最新回复
(
0
)