已知函数f(x)在区间[a,+∞)上具有二阶导数,f(a)=0,f’(x)>0,f”(x)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.

admin2022-09-22  44

问题 已知函数f(x)在区间[a,+∞)上具有二阶导数,f(a)=0,f’(x)>0,f”(x)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.

选项

答案点(b,f(b))处的切线方程为y-f(b)=f’(b)(x-b). 令y=0,得x0=b-[*]. 由于f’(x)>0,可知f(x)在[a,+∞)上单调递增. 又f(a)=0,b>0,可知f(b)>0,f’(b)>0. 因此x0=b-[*]<b. 又x0-a=b-a-[*],且在区间[a,b]上,由拉格朗日中值定理得 [*]=f’(ξ),ξ∈(a,b). 则有x0-a=b-a-[*]. 由于f”(x)>0,可知f’(x)在[a,+∞)上单调递增. 因此f’(b)>f’(ξ),继而可得x0>a. 综上所述,a<x0<b,结论得证.

解析
转载请注明原文地址:https://jikaoti.com/ti/xnhRFFFM
0

最新回复(0)