首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵. (2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵. (2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
admin
2021-11-09
38
问题
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.
(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
选项
答案
(1)设B和A乘积可交换,要证明B是对角矩阵,即要说明B的对角线外的元素b
ij
(i≠j)都为0 设A的对角线元素为λ
1
,λ
2
,…,λ
n
.则AB的(i,j)位元素为λ
i
b
ij
,而BA的(i,j)位元素为λ
j
b
ij
.因为AB=BA,得 a
i
b
ij
=λ
j
b
ij
. 因为λ
i
≠λ
j
,所以b
ij
=0. (2)先说明C一定是对角矩阵.由于C与对角线上元素两两不相等的n阶对角矩阵乘积可交换,由(1)的结论得出C是对角矩阵. 再说明C的对角线元素c
11
,c
22
,…,c
nn
都相等. 构造n阶矩阵A,使得其(i,j)位元素为1,i≠j,则 CA的(i,j)位元素为c
ii
,AC的(i,j)位元素为c
jj
.于是c
ii
=c
jj
.这里的i,j是任意的,从而 c
11
=c
22
=…=c
nn
.
解析
转载请注明原文地址:https://jikaoti.com/ti/xVlRFFFM
0
考研数学二
相关试题推荐
一半径为R的球沉入水中,球面顶部正好与水面相切,球的密度为1,求将球从水中取出所做的功.
曲线y=χ4(χ≥0)与χ轴围成的区域面积为_______.
就a,b的不同取值,讨论方程组=3,解的情况.
设D是由点O(0,0),A(1,2)及B(2,1)为顶点构成的三角形区域,计算χdχdy.
设区域D={(χ,y)|0≤χ≤1,0≤y≤1},则|y-χ2|dχdy=_______.
设f(χ)在[0,]上连续,在(0,)内可导,证明:存在ξ,η(0,),使得
设f(χ)在[0,1]上连续且满足f(0)=1,f′(χ)-f(χ)=a(χ-1).y=f(χ),χ=0,χ=1,y=0围成的平面区域绕χ轴旋转一周所得的旋转体体积最小,求f(χ).
设函数y=f(χ)由方程χy+2lnχ=y4所确定,则曲线y=f(χ)在点(1,1)处的法线方程为_______.
设,f具有连续的二阶导数,则=.
f(x1,x2,x3,x4)=XTAX的正惯性指数是2,且A2-2A=O,该二次型的规范形为______.
随机试题
成果:奋斗:共享
关于铝合金外窗框与砌体墙体固定方法,下列各项错误的是()。
背景达海制药厂机电安装工程项目由A单位实施工程总承包,其与某劳务公司签订了劳务分包合同,约定该劳务公司安排40名农民工做力工,进行基础地基处理和材料搬运工作。进场前进行了安全教育。地基工程结束后,准备工艺设备吊装作业,吊装方案详细可靠,具体内容
发行股票数量在3亿股以上的,发行人及其主承销商可以在发行方案中采取超额配售选择权。()
M投资者预计A股票将要跌价,于2012年4月1日与S投资者订立卖出合约,合约规定有效期为3个月,M投资者可按现有价格10元卖出A股票1000股,期权费为每股0.5元。2012年5月1日A股票价格下跌至每股8元(不考虑税金与佣金等其他因素)。关于S投资者
以下各项中,( )属于公司债券的发行人。
《“十三五”旅游业发展规划》指出要加快建立以()评价为主的旅游目的地评价机制。
一般而言,()是公司的执行机构。
政治上层建筑和思想上层建筑的关系是()。
下列命令中,修改库文件结构的命令是
最新回复
(
0
)