首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(17)设二次型f(x1,x2,x3)=2x12-x22+ax32+2x1x2-8x1x3+2x1x3在正交变换x=Qy下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
(17)设二次型f(x1,x2,x3)=2x12-x22+ax32+2x1x2-8x1x3+2x1x3在正交变换x=Qy下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
admin
2021-01-19
69
问题
(17)设二次型f(x
1
,x
2
,x
3
)=2x
1
2
-x
2
2
+ax
3
2
+2x
1
x
2
-8x
1
x
3
+2x
1
x
3
在正交变换x=Qy下的标准形为λ
1
y
1
2
+λ
2
y
2
2
,求a的值及一个正交矩阵Q.
选项
答案
二次型f(x
1
,x
2
,x
3
)的矩阵为A=[*] 由题设知Q
-1
AQ=Q
T
AQ=[*],A的一个特征值为零,所以有 [*] 故得a=2,由A的特征方程 [*] =(λ-6)(λ+3)λ=0 得A的全部特征值,不妨设λ
1
=6,λ
2
=-3,λ
3
=0. 对于λ
1
=6,解方程组(6I-A)x=0,对应的单位特征向量可取为ξ
1
=[*](1,0,-1)
T
; 对于λ
2
=-3,解方程组(-3I-A)x=0,对应的单位特征向量可取为ξ
2
=[*](1,-1,1)
T
; 对于λ
3
=0,解方程组Ax=0,对应的单位特征向量可取为ξ
3
=[*](1,2,1)
T
. 因此,所求的正交矩阵可取为 Q=(ξ
1
,ξ
2
,ξ
3
)=[*].
解析
转载请注明原文地址:https://jikaoti.com/ti/xLARFFFM
0
考研数学二
相关试题推荐
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状,若它在进入大气层开始燃烧的前3s内,减少了体积的7/
设函数f(x)(x≥0)连续可微,f(0)=1,已知曲线y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积与曲线y=f(x)在[0,x]上的弧长值相等,求f(x).
设u=u(x,y)由方程组确定,其中φ(v),ψ(v)有连续的二阶导数且yφ’’(v)+ψ’’(v)≠0,求证:
设A是3阶矩阵,有特征值λ1=1,λ2=-1,λ3=0,对应的特征向量分别是ξ1,ξ2,ξ3,k1,k2是任意常数,则非齐次方程组Ax=ξ1﹢ξ2z的通解是()
假设曲线ι1:y=1-x2(0≤x≤1)与x轴,y轴所围成区域被曲线ι2:y=ax2分为面积相等的两部分,其中a是大于零的常数,试确定a的值.
若n阶行列式中零元素的个数多于n2-n,则该行列式的值为________.
已知二次型f(χ1,χ2,χ3)=χ12-2χ22+bχ32-4χ1χ2+4χ1χ3+2aχ2χ3(a>0)经正交变换化成了标准形f=2y12+2y22-7y32,求a=_______、b=_______的值和正交矩阵P=_______.
若二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2一2x1x3+4x2x3为正定二次型,则λ的取值范围是________.
(1992年)设f(χ)=,则【】
[2008年]微分方程(y+x2e-x)dx—xdy=0的通解是y=_________.
随机试题
下列各项中都是上声字的是()
处方写锦纹应付
下列关于税务行政复议听证的说法,正确的是()。
网络计划调整时,非关键工作在其时差范围内进行调整的目的有()。
某单位转让一幢已经使用过的楼房,售价500万元。该楼房原价为600万元,已提折旧400万元。经房地产评估机构评估,该楼重置成本价为800万元,成新度折扣率为五成。转让时缴纳各种税费共27.5万元。该单位应缴纳的土地增值税是()。
(),岗位胜任特征的研究意义主要体现在工作岗位分析上。
注意事项1.本题本由给定资料与作答要求两部分构成。考试时限为180分钟。其中,阅读给定资料参考时限为60分钟,作答参考时限为120分钟。满分100分。2.监考人员宣布考试开始时,你才可以开始答题。3.请在题本、答题卡指
某公司销售部门主管大华拟对本公司产品前两季度的销售情况进行统计,按下述要求帮助大华完成统计工作:参照“产品基本信息表”所列,运用公式或函数分别在工作表“一季度销售情况表”、“二季度销售情况表”中,填入各型号产品对应的单价,并计算各月销售额填入F列中
Childrenare_________forsayingthewrongthingatthewrongtime.
A、Thisisthefirsttimeforthemantowearatie.B、Helookswonderfulwhenheisnotwearingatie.C、Thedesignofthetied
最新回复
(
0
)