首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
admin
2017-10-19
33
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P
-1
AP=A.
选项
答案
(Ⅰ)由已知条件有 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B. 因为α
1
,α
2
,α
3
线性无关,矩阵P可逆,所以P
1
-1
AP
1
=B,即矩阵A与B相似.由 |λE-B|=[*]=(λ-1)
2
(λ-4), 知矩阵B的特征值是1,1,4,故矩阵A的特征值是1,1,4. (Ⅱ)对矩阵B,由(E-B)x=0,得λ=1的特征向量β
1
=(-1,1,0)
T
, β
2
=(-2,0,1)
T
;由(4E-B)x=0,得λ=4的特征向量β
3
=(0,1,1)
T
. 那么令P
2
=(β
1
,β
2
,β
3
)=[*] 故当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(-α
1
+α
12
,-2α
1
+α
3
,α
2
+α
3
)时, P
-1
AP=A=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/x0SRFFFM
0
考研数学三
相关试题推荐
=__________
设X,Y为两个随机变量,若E(XY)=E(X)E(Y),则().
设b>a>0,证明:
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且,证明(1)中的
设f(x)=,其中g(x)为有界函数,则f(x)在x=0处().
函数f(x)=x3一3x+k只有一个零点,则k的范围为().
设A为可逆的实对称矩阵,则二次型XTAN与XTA—1X().
设的逆矩阵A—1的特征向量.求x,y,并求A—1对应的特征值μ.
设A是3×4矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
某商品一周的需求量X是随机变量,已知其概率密度为假设各周的需求量相互独立,以Uk表示k周的总需求量,试求:(1)U2和U3的概率密度fk(x)(k=2,3);(2)接连三周中的周最大需求量的概率密度f(3)(x).
随机试题
在传播学中,介于随机抽样和非随机抽样之间的抽样形式是( )。
完全由研究者自己选定研究题目,不受任何组织和个人的影响,使研究者的自主性和学术兴趣能够得到很好地体现的选题方式是()
国际贸易短期融资的方式中,打包放款属于【】
简述人体生理功能活动的主要调节方式。
正常人支/芳比值为
智力测验主要应用领域应除外哪项
在太阳能供电系统中,()抗辐射能力很强,目前主要运用于宇航及通信卫星等空间领域。
根据下面材料回答下列题。2003年一季度,京津沪渝穗五市分别实现房地产投资118.0亿元、30.5亿元、139.8亿元、43.7亿元和70.7亿元,同比增长20.2%、50.1%、29.6%、41.3%和8.8%。五市房地产投资占总投资比重分别为
Oneimportantthingduringthepre-Christmasrushatourhousewasthearrivalofmydaughter’skindergartenreportcard.Sheg
Theyleftatnine,sothey______bynow.
最新回复
(
0
)