己知抛物面方程2x2+y2=z. (1)求抛物面上点M(1,1,3)处的切平面方程; (2)当k为何值时,所求切平面与平面3x+ky-4z=0相互垂直.

admin2018-03-29  40

问题 己知抛物面方程2x2+y2=z.
(1)求抛物面上点M(1,1,3)处的切平面方程;
(2)当k为何值时,所求切平面与平面3x+ky-4z=0相互垂直.

选项

答案(1)对抛物面方程分别求x,y,z的偏导数,令F(x,y,z)=2x2+y2-z,Fx(x,y,z)=4x,Fy(x,y,z)=2y,Fz(x,y,z)=-1,带入M(1,1,3),得到该点处的法向量为(4,2,-1),利用点法式方程,则切平面方程为4(x-1)+2(y-1)-(z-3)=0。 (2)由(1)知,切平面方程为4(x-1)+2(y-1)-(z-3)=0。则切平面法向量为(4,2,-1),平面3x+ky-4z=0法向量为(3,k,-4),由两平面垂直,得到4×3+2×k+(-1)×(-4)=0,解得k=-8.

解析
转载请注明原文地址:https://jikaoti.com/ti/wzz9FFFM
0

相关试题推荐
最新回复(0)