首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)= g(a),f(b)= g(b),证明:存在ξ∈(a,b),使得f "(ξ)=g"(ξ).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)= g(a),f(b)= g(b),证明:存在ξ∈(a,b),使得f "(ξ)=g"(ξ).
admin
2022-09-05
38
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)= g(a),f(b)= g(b),证明:存在ξ∈(a,b),使得f "(ξ)=g"(ξ).
选项
答案
令h(x)= f(x)-g(x),则h(a)=h(b)=0. 设f(x),g(x)在(a,b)内的最大值M分别在a∈(a,b) ,β∈(a ,b)取得. 当a=β时,取η=a,则h(η)=0. 当a≠β时, h(a)= f(a)-g(a)=M-g(a)>0, h(β)= f(β)-g(β)= f(β)- M<0. 由介值定理,存在介于a与β之间的点η,使得h(η)=0. 综上,存在η∈(a.b),使得h(η)=0.因此由罗尔定理可知,存在ξ
1
∈(a,η),ξ
2
∈(η,b),使得 h’(ξ
1
)=h’(ξ
2
)=0, 再由罗尔定理可知,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得h"(ξ)=0,即 f"(ξ)=g"(ξ).
解析
转载请注明原文地址:https://jikaoti.com/ti/wlfRFFFM
0
考研数学三
相关试题推荐
设y=y(x)为微分方程2xydx+(x2-1)dy=0满足初始条件y(0)=1的解,则y(x)dx为().
微分方程y’+ytanx=cosx的通解为_________.
设曲线y=a+x-x3,其中a<0.当x>0时,该曲线在x轴下方与y轴、x轴所围成图形的面积和在x轴上方与x轴所围成图形的面积相等,求a.
设三阶矩阵A的特征值为λ1=-1,λ2=-,λ3=,其对应的特征向量为a1,a2,a3,令P=(2a3,-3a1,-a2),则P-1(A-1+2E)P=_____________.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b.证明dxdy≥(b-a)2.
设f(x,y)=讨论f(x,y)在(0,0)处的连续性、可偏导性与可微性.
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
已知线性方程组有无穷多解,求a,b的值并求其通解。
(1996年)设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一11)求f’(x);2)讨论f’(x)在(一∞,+∞)上的连续性.
随机试题
A.圆韧带内的小凹动脉B.股骨干滋养动脉升支C.旋股内、外侧动脉的分支D.骺外侧动脉经股骨颈骨折损伤的血管主要是
患者男性,26岁。病程3个月,首次住院,入院诊断为精神分裂症,首次使用抗精神病药物。
A.乳糜微粒B.极低密度脂蛋白C.低密度脂蛋白D.中间密度脂蛋白E.高密度脂蛋白运输外源性三酰甘油的脂蛋白
下列项目管理组织方式中,项目部虽需接受上级组织职能部门的指导,但本身仍处于项目管理主导地位的是()组织。
谨慎原则的关键是要搞清楚存在不存在不确定性因素的情况。()
与其他资产类型的评估相比,矿业权评估的不确定性较多,主要体现为()。
企业所得税纳税审核中发现下列所得,可以减按10%的税率征收企业所得税的有()。
一、注意事项1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、给定材料1.国家助学
[A]However,thecultureofAtlantisbegantodecay.Platorecountsthatthepeoplechangedtheirlaw-respectingwayoflife.The
A、 B、 C、 C根据“计算机是于1976年发明的。”可知与图片C相符。所以应选C。
最新回复
(
0
)