首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,证明:x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x一x0)>f(x). (*)
设f(x)在(a,b)内可导,证明:x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x一x0)>f(x). (*)
admin
2018-11-21
47
问题
设f(x)在(a,b)内可导,证明:
x,x
0
∈(a,b)且x≠x
0
时,f’(x)在(a,b)单调减少的充要条件是
f(x
0
)+f’(x
0
)(x一x
0
)>f(x). (*)
选项
答案
充分性:设(*)成立,[*]x
1
,x
2
∈(a,b)且x
1
<x
2
→ f(x
2
)<(x
1
)+f’(x
1
)(x
2
—x
1
),f(x
1
)<f(x
2
)+f’(x
2
)(x
1
—x
2
). 两式相加 → [f’(x
1
)一f’(x
2
)](x
2
一x
1
)>0 → f’(x
1
)>f’(x
2
),即f’(x)在(a,b)单调减少. 必要性:设f’(x)在(a,b)单调减少.对于[*]x,x
0
∈(a,b)且x≠a
0
,由微分中值定理得 f(x)一[f(x
0
)+f’(x
0
)(x一x
0
)]=[f’(ξ)一f’(x
0
)](x一x
0
)<0, 其中ξ在x与x
0
之间,即(*)成立.
解析
转载请注明原文地址:https://jikaoti.com/ti/wY2RFFFM
0
考研数学一
相关试题推荐
设A=(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
将函数f(x)=x-1(0≤x≤2)展开成周期为4的余弦函数。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
设ξ,η是两个相互独立且服从同一分布的随机变量,已知ξ的分布率为P{ξ=i}=,i=1,2,3。又设X=max(ξ,η),Y=min(ξ,η)。(Ⅰ)写出二维随机变量的分布律:(Ⅱ)求随机变量X的数学期望E(X)。
设方阵A1与B1合同,A2与B2合同,证明:合同。
试确定常数a与b,使得经变换u=x+ay,v=x+by,可将方程(其中z具有二阶连续偏导数),并求z=z(x+ay,x+by)。
已知方程组有解,证明:方程组无解。
随机试题
甘麦大枣汤的功用酸枣仁汤的功用
HLA-I类分子存在于
苦味药的作用是
当需要进行土壤环境影响评价时,除要比较详细地叙述主要土壤类型及其分布、土壤的肥力与使用情况等内容外,还应根据需要选择土壤的物理、化学性质,土壤一次、二次污染状况,水土流失的原因、特点、面积、元素及流失量等,同时要附()。
《民用建筑节能条例》规定中,未经()签字,墙体材料、保温材料、门窗、采暖制冷系统和照明设备不得在建筑上使用或者安装,施工单位不得进行下一道工序的施工。
下列关于政府债券的说法,错误的是()。
判定质量不稳定的批应采用()抽样方案。
人本主义学者认为学习的过程就是学生在一定条件下自我实现的过程,与“自我”的形成无关。()
中国共产党独立领导革命战争和创建人民军队始于()。
社会主义市场经济体制的基础是()。
最新回复
(
0
)