首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)A是n阶实对称矩阵.λ1,λ2,…,λn是A的特征值,ξ1,ξ2,…,ξn是A的分别对应于λ1,λ2,…,λn的标准正交特征向量.证明A可表示成n个秩为1的实对称矩阵的和; (Ⅱ)设191,将A表示成三个秩为1的实对称矩阵的和.
(Ⅰ)A是n阶实对称矩阵.λ1,λ2,…,λn是A的特征值,ξ1,ξ2,…,ξn是A的分别对应于λ1,λ2,…,λn的标准正交特征向量.证明A可表示成n个秩为1的实对称矩阵的和; (Ⅱ)设191,将A表示成三个秩为1的实对称矩阵的和.
admin
2019-01-24
30
问题
(Ⅰ)A是n阶实对称矩阵.λ
1
,λ
2
,…,λ
n
是A的特征值,ξ
1
,ξ
2
,…,ξ
n
是A的分别对应于λ
1
,λ
2
,…,λ
n
的标准正交特征向量.证明A可表示成n个秩为1的实对称矩阵的和;
(Ⅱ)设
191,将A表示成三个秩为1的实对称矩阵的和.
选项
答案
(Ⅰ)令Q=(ξ
1
,ξ
2
,…,ξ
n
),则Q是标准正交矩阵.且 [*] 其中ξ
i
ξ
i
T
均有,r(ξ
i
ξ
i
T
)=1,且(ξ
i
ξ
i
T
)
T
=(ξ
i
T
)
T
ξ
i
T
=ξ
i
ξ
i
T
,i=1,2,…,n. 故A可表示成n个秩为1的实对称矩阵的和. (Ⅱ) [*] =(λ+4)[(λ-3)(λ-4)-2]=(λ+4)(λ-2)(λ-5). 故A有特征值λ
1
=-4,λ
2
=2,λ
3
=5. [*] 故 A=λ
1
ξ
1
ξ
1
T
+λ
2
ξ
2
ξ
2
T
+λ
3
ξ
3
ξ
3
T
[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/wQ1RFFFM
0
考研数学一
相关试题推荐
设随机变量X~E(λ),令Y=,求P(X+Y=0)及FY(y).
[*]
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设f(x)是满足的连续函数,且当x→0时,∫0xf(t)dt是与xn同阶的无穷小量,求正整数n.
设L:y=sinx(0≤x≤),由x=0,L及y=sint围成的区域面积为S1(t);由L、y=sint及x=围成的区域面积为S2(t),其中0≤t≤.求S(t)=S1(t)+S2(t).
设随机变量X,Y相互独立且都服从标准正态分布,令U=X2+Y2.求:fU(μ);
计算曲面积分(x3+z)dydz+(y3+x)dzdx+dxdy,其中∑是曲线(|x|≤1)绕x轴旋转一周所得到的曲面,取外侧.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:二次型XTAX的标准形;
设随机变量X服从参数为2的指数分布,证明:Y=1一e-2X在区间(0,1)上服从均匀分布.
某人的食量是2500卡/天,其中1200卡/天用于基本的新陈代谢.在健身运动中,他所消耗的为16卡/千克/天乘以他的体重.假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时间变化.
随机试题
最常用的体温计是()。
HehasneverseentheGreensandheknows______aboutthem.
A.横断面调查B.追踪性调查C.问卷调查D.筛查E.半纵向调查选择较少量对象,在一段较长时间内进行定期的、连续多次的调查属于
关于白血病发病情况,下列说法错误的是
在承揽合同中,承揽人应承担违约责任的情形是()。
记账凭证应根据原始凭证及有关资料编制。()
在VisualFoxPro中,关于查询设计器和视图设计器,以下描述正确的是()。
ErumNadeem:Yourarticleonhappinessliftedmyspirits.Thereisoneveryinterestingaspecttonote:theeightstepstoh
Youarethelinemanagerinalargecompany.Youhavebeeninformedthatyourmarketingmanagerhadanoutstandingperformancea
Weallknowthatemotionsoriginateinthebrain.Butweusuallytalkaboutouremotionscomingfromourhearts.Ifsomeoneyou
最新回复
(
0
)