首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
admin
2019-04-09
40
问题
设n阶矩阵A的伴随矩阵A
*
≠O,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
选项
A、不存在.
B、仅含一个非零解向量.
C、含有两个线性无关的解向量.
D、含有三个线性无关的解向量.
答案
B
解析
因为齐次线性方程组的基础解系所含线性无关的解向量的个数为n-r(A).而由A
*
≠O
可知,A
*
中至少有一个非零元素,由伴随矩阵的定义可得矩阵A中至少有一个(n-1)阶子式不为零,再由矩阵秩的定义有r(A)≥n-1.又由Ax=b有互不相等的解知,其解存在且不唯一,故有r(A)<n,从而r(A)=n-1.因此对应的齐次线性方程组的基础解系仅含一个非零解向量,故选B.
转载请注明原文地址:https://jikaoti.com/ti/vsBRFFFM
0
考研数学三
相关试题推荐
设f(x)=验证f(x)在[0,2]上满足拉格朗日中值定理的条件,求(0,2)内使得f(2)-f(0)=2f’(ξ)成立的ξ.
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设向量组α1,α2,…,α5为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+α5).
求微分方程y’’+4y’+4y=0的通解.
(1)验证y=x+满足微分方程(1-x)y’+y=1+x;(2)求级数y=x+的和函数.
设=2,则级数anx2n+1的收敛半径为().
已知随机变量X1,X2,X3相互独立,且都服从正态分布N(0,σ2),如果随机变量Y=X1X2X3的方差D(Y)=,则σ2=________。
已知事件A与B相互独立,P(A)=a,P(B)=b。如果事件C发生必然导致事件A与B同时发生,则事件A、B、C均不发生的概率为________。
随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则()
设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则()
随机试题
感染性休克应用皮质类固醇的作用是
肾盂肾炎发病的相关因素不包括
()有助于解决招标代理行业的委托代理问题,降低代理成本。
下列仪表中,不能用于光接收机灵敏度和最小过载光功率测试的是()。
现金及现金等价物的内容不包括( )。
______般认为,态度与品德的形成过程经历了______、______、______三个阶段。
炎热的夏天,蜻蜓经常贴着水面飞行,尾部不时触到水里,溅起朵朵水花,这就是“蜻蜓点水”,对此正确的解释是()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
第一自然段中作者发表了一段议论(文中加点处),其用意是什么?选出理解正确的一项:以下对文意理解正确的一项是:
Pollutionisa"dirty"word.Topollutemeanstocontaminate—topsoilorsomethingbyintroducingimpuritieswhichmake【C1】______
最新回复
(
0
)