首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2. 当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2. 当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
admin
2019-12-26
27
问题
设A为3阶实对称矩阵,且满足条件A
2
+2A=O.已知A的秩r(A)=2.
当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
选项
答案
【解法1】矩阵A+kE仍为实对称矩阵.由上题知,A+kE的全部特征值为 -2+k,-2+k,k, 于是,当k>2时矩阵A+kE的特征值均大于零.因此,当k>2时,矩阵A+kE为正定矩阵. 【解法2】 实对称矩阵必可对角化,故存在可逆矩阵P,使得 P
-1
AP=Λ.A=PΛP
-1
. 于是 A+kE=PΛP
-1
+kPP
-1
=P(Λ+kE)P
-1
. 所以 A+kE~Λ+kE. 而 [*] 若Λ+kE为正定矩阵,只需其顺序主子式大于0,即k需满足 k-2>0,(k-2)
2
>0,(k-2)
2
k>0, 因此,当k>2时,矩阵Λ+kE为正定矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/vniRFFFM
0
考研数学三
相关试题推荐
我们常假设某种型号的电子元件的寿命X服从指数分布,其密度为其中λ>0是一个常数.在某些情况,严格地说λ是一个随机变量,记为Λ(例如元件选自一个很大的群体,这个群体的各个成员具有不同的工作特性).此时我们假设X的条件概率密度为现设Λ的概率密度为试
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
设矩阵A,B满足A*BA=2BA-8E,且A=,则B=______.
设有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P一1AP为对角矩阵.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
已知正、负惯性指数均为1的二次型f=xTAx通过合同变换x=Py化为f=yTBy,其中B=则a=________。
四元方程组的基础解系是______.
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
随机试题
下列各项中,属于反映企业经营成果的会计要素是()
培育强烈的爱国情感,需要
现浇二次衬砌混凝土应采用()混凝土,且应具有良好的抗裂性能。
根据外汇交易方式的不同,外汇交易可以分为()。
下列属于嵊州吹打的主要传统曲目有()。
下列说法中,正确的是:
CapitalCityandSmithsvillearetwofairlylargetownsintheMidwestnearChicago.NeitherisaswellknownasChicago.(1)___
下列进程状态的转换中,哪一个是不正确的?
Lookatthelistbelowoftheusesofglass.Accordingtothepassage,statewhethertheseusesexisttoday,willexistinthe
A、Objective.B、Pessimistic.C、Skeptical.D、Subjective.C观点态度题。对话一开始女士就表示,她对人类破坏地球这一观点并不是十分赞同。接下来她又说,不能因为短短二十年的环境异常就要求人类改变自己的生活方式
最新回复
(
0
)