首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组B:b1…,r,能由向量组A:a1…,ar线性表示为(b1…,br)=(a1…,ar)K,其中K为s×r矩阵,且向量组A线性无关.证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
设向量组B:b1…,r,能由向量组A:a1…,ar线性表示为(b1…,br)=(a1…,ar)K,其中K为s×r矩阵,且向量组A线性无关.证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
admin
2019-05-11
42
问题
设向量组B:b
1
…,
r
,能由向量组A:a
1
…,a
r
线性表示为(b
1
…,b
r
)=(a
1
…,a
r
)K,其中K为s×r矩阵,且向量组A线性无关.证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
选项
答案
必要性:令B=(b
1
…,b
r
),A=(a
s
…,a
s
),则有B=AK,由定理r(B)=r(AK)≤min{r(A),r(K)},结合向量组B:b
1
,b
2
,…,b
r
线性无关知r(B)=r,故r(K)≥r.又因为K为r×s阶矩阵,则有r(K)≤min{r,s}.且由向量组B:b
1
,b
2
,…,b
r
能由向量组A:a
1
,a
2
,…,a
s
线性表示,有r≤S,即min{r,s}=r.综上所述,r≤r(K)≤r,即r(K)=r.充分性:已知r(K)=r,向量组A线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使[*]于是有[*]由矩阵秩的性质[*]即r(B)=r(K)=r,因此向量组B线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/vPLRFFFM
0
考研数学二
相关试题推荐
设曲线L位于χOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(),求L的方程.
设y=,且f′(χ)=lnχ,求y′.
设线性方程组(1)求线性方程组(Ⅰ)的通解;(2)m,n取何值时,方程组(Ⅰ)与(Ⅱ)有公共非零解;(3)m,n取何值时,方程组(Ⅰ)与(Ⅱ)同解.
设f(χ)在[a,b]上连续可导,f(χ)在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(χ)dχ=0,证明:(1)在(a,b)内至少存在一点ξ,使得f′(ξ)=f(ξ);(2)在(a,b)内至少存在一点η(η≠ξ),使得f〞(η)=f
求极限
求微分方程y〞-y′-6y=0的通解.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得f(ξ)=f′(ξ).
函数f(χ)=,的连续区间是_______.
设方程组有无穷多解,矩阵A的特征值为λ1=1,λ2=-1,λ3=0,其对应的特征向量为(Ⅰ)求A;(Ⅱ)求(A+E)X=0的通解.
用拉格朗日乘数法计算下列各题:(1)欲围一个面积为60m2的矩形场地,正面所用材料每米造价10元,其余三面每米造价5元.求场地长、宽各为多少米时,所用材料费最少?(2)用a元购料,建造一个宽与深相同的长方体水池,已知四周的单位面积材料费为底面单位面积材
随机试题
已知R1=2Ω,R2=5Ω,如将R1和R2并联后的电阻是()。
患者,男性,31岁。塌方事故中致骨盆骨折及胫腓骨骨折。接诊时首先应注意的并发症是
下列关于税务行政赔偿的请求时效的陈述,正确的是()。
某制造企业为增值税一般纳税人,自2016年起被认定为高新技术企业,其2017年度的生产经营情况如下。(1)当年销售货物实现销售收入8000万元,对应的成本为5100万元。(2)12月购入专用于研发的新设备,取得增值税普通发票上注明的
我国最早的一部医书是()。
在某一时期,一国经济中总供求大体平衡,但存在消费需求不足而投资需求旺盛的结构性矛盾,该国应实行()。
什么是可转换证券?其基本特征是什么?
A.Youcanscheduleanautomaticpayment.B.Tryingtogetoutofthelatefeesometimes.C.You’dbetterplantopayahead.D.Chan
(1)使用菜单设计器制作一个名为“cd1”的菜单.菜单有两个菜单项“工具”和“查看”。“工具”菜单项有“拼写和语法”和“字数统计”两个子菜单;“查看”菜单项下有“普通”“页丽”“图表”和“表格”4个子菜单。(2)对“仓库管理”数据库编写程序“cx1
Warfarereferstotheuseofforceonthepartoftwoormorenationsorotherorganizedgroupsforthepurposeofdecidingques
最新回复
(
0
)