首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:非齐次线性方程组(Ⅰ)有解的充要条件是齐次线性方程组(Ⅱ)的任意一组解y1,y2,…,ym必满足方程组(Ⅲ),其中
证明:非齐次线性方程组(Ⅰ)有解的充要条件是齐次线性方程组(Ⅱ)的任意一组解y1,y2,…,ym必满足方程组(Ⅲ),其中
admin
2021-07-27
35
问题
证明:非齐次线性方程组(Ⅰ)有解的充要条件是齐次线性方程组(Ⅱ)的任意一组解y
1
,y
2
,…,y
m
必满足方程组(Ⅲ),其中
选项
答案
设A=(a
ij
)
m×n
,x=[x
1
,x
2
,…,x
n
]
T
,y=[y
1
,y
2
,…,.y
m
]
T
,b=[b
1
,b
2
,…,b
m
]
T
,则方程组(Ⅰ),(Ⅱ),(Ⅲ)的矩阵形式分别是(Ⅰ):Ax=b,(Ⅱ):A
T
y=0,(Ⅲ):b
T
y=0.必要性.如果方程组(Ⅰ)有解。则Ax=b两边同时转置,有b
T
=x
T
A
T
.设y是方程组(Ⅱ)的任一解,则A
T
y=0.于是b
T
y=(x
T
A
T
)y=x
T
(A
T
y)=x
T
0=0,所以方程组(Ⅱ)的任一解y满足方程组(Ⅲ).充分性.将方程组(Ⅱ)和(Ⅲ)联立起来,记为方程组(Ⅳ),其矩阵形式为[*]如果方程组(Ⅱ)的任一解y满足方程组(Ⅲ),即A
T
y=0,b
T
y=0,则方程组(Ⅱ),(Ⅳ)同解.于是方程组(Ⅱ)和(Ⅳ)系数矩阵的秩相等,即[*]由此可知,矩阵[*]的最后一行b
T
可由A
T
的n个行向量线性表示.不妨设A=[α
1
,α
2
,…,α
n
],则[*],所以存在一组数x
1
,x
2
,…,x
n
,使得x
1
α
1
T
+x
2
α
2
T
+…+x
n
α
n
T
=b
T
,两边同时转置得x
1
α
1
+x
2
α
2
+…+x
n
α
n
=b,即Ax=b,因此方程组(Ⅰ)有解.证毕.
解析
转载请注明原文地址:https://jikaoti.com/ti/vJlRFFFM
0
考研数学二
相关试题推荐
设f(0)=0,则f(χ)在点χ=0可导的充要条件为【】
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
求微分方程χy′=yln的通解.
设A,B均为n阶正定矩阵,下列各矩阵中不一定是正定矩阵的是()
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
设n阶矩阵A的伴随矩阵为A*,证明:|A*|=|A|n一1。
已知向量组(I)α1,α2,α3,α4线性无关,则与(I)等价的向量组是()
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α3线
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
随机试题
对一些重大攻关项目来说,适合使用的组织结构类型是()
“空巢”感是中年危机中哪一种变化的现象【】
具有抗凝血作用的是
蒋某系某市国税局财务科的副科长,2008年利用经手管理该市税收统计的工作之计,采取不入账、少入账、修改财务会计报表等手段,从中截留国家税款50万元,将这些款项划到家人的银行账户,未使用便被检察机关逮捕。对于蒋某行为评价正确的是:()
某企业获得10万元贷款,偿还期五年,年利率10%,每年末只还所欠利息,本金在第五年末一次还清,则五年还款总额为()万元。
一家商业银行对所有客户的贷款政策均一视同仁,对信用等级低以及高的均适用同样的贷款利率,为改进业务,此银行应采取的风险管理措施是()。
科学家对76位心脏病患者进行了研究,他们分别采用“一名志愿者带一只狗前去探望病人”“一名志愿者前去探望病人”以及“没有志愿者”三种方法分别测试这些病人的反应。结果发现第一种情况下病人的焦虑程度下降了24%,第二种情况下病人的焦虑程度只下降了10%,第三种情
学前儿童美术教育的内容涉及()、手工和欣赏三大板块,它们各自独立但又相互联系。
下面是对学习策略的解释,其中不属于学习策略定义的观点是()。
基层民主是我国广大工人、农民、知识分子和各阶层人士在城乡基层政权机关、企事业单位和基层自治组织中依法直接行使民主权利。发展基层民主:()
最新回复
(
0
)