设f(x)在[a,b]上连续且严格单调增加,证明: (a+b)∫abf(x)dx<2∫abxf(x)dx.

admin2018-09-25  17

问题 设f(x)在[a,b]上连续且严格单调增加,证明: (a+b)∫abf(x)dx<2∫abxf(x)dx.

选项

答案令F(t)=(a+t)∫atf(x)dx-2∫atxf(x)dx,则 F’(t)=∫atf(x)dx+(a+t)f(t)-2tf(t) =∫atf(x)dx-(t-a)f(t)=∫atf(x)dx-∫atf(t)dx =∫at[f(x)-f(t)]dx. 因为a≤x≤t,且f(x)在[a,b]上严格单调增加,所以f(x)-f(t)≤0,于是有 F’(t)=∫at[f(x)-f(t)]dx≤0, 即F(t)单调减少,又F(a)=0,所以F(b)<0,从而(a+b)∫abf(x)dx-2∫abxf(x)dx<0, 即(a+b)∫abf(x)dx<2∫abxf(x)dx.

解析
转载请注明原文地址:https://jikaoti.com/ti/up2RFFFM
0

最新回复(0)