首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax一β的通解为k(1,2,3,0)T+(1,1,1,1)T,其中k为任意常数,又矩阵B=(α3,α2,α1,β一α4),求方程组Bx=α1一α2的通解.
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax一β的通解为k(1,2,3,0)T+(1,1,1,1)T,其中k为任意常数,又矩阵B=(α3,α2,α1,β一α4),求方程组Bx=α1一α2的通解.
admin
2020-10-21
41
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,α
1
,α
2
,α
3
,α
4
是4维列向量,若方程组Ax一β的通解为k(1,2,3,0)
T
+(1,1,1,1)
T
,其中k为任意常数,又矩阵B=(α
3
,α
2
,α
1
,β一α
4
),求方程组Bx=α
1
一α
2
的通解.
选项
答案
由方程组Ax=β的通解为k(1,2,3,0)
T
+(1,1,1,1)
T
,得4一R(A)=1,即R(A)=3; 由此可知,α
1
,α
2
,α
3
线性相关,若R(α
1
,α
2
,α
3
)≤1,则R(α
1
,α
2
,α
3
,α
4
)=R(A)≤2,与R(A)=3矛盾.故R(α
1
,α
2
,α
3
)=2. 又B=(α
3
,α
2
,α
1
,β一α
4
)=(α
3
,α
2
,α
1
,α
1
|α
2
+α
3
),所以R(B)=R(B[*]α
1
—α
2
)=2,于是方程组Bx=α
1
—α
2
有解,且Bx=0有4—R(B)=2个线性无关的解向量. 由 [*] 知(3,2,1,0)
T
是Bx=0的解. 由 [*] 知(1,1,1,一1)
T
是Bx=0的解. 由 [*] 知(0,—1,1,0)
T
是Bx=α
1
—α
2
的一个解. 故方程组Bx=α
1
—α
2
的通解为 x=k
1
(3,2,1,0)
T
+k
2
(1,1,1,—1)
T
+(0,—1,1,0)
T
, 其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/umARFFFM
0
考研数学二
相关试题推荐
在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是()
设n阶矩阵A与B相似,则
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设矩阵Am×n的秩为r(A)=m<n.b为任一m维列向量,则【】
设D是χOy平面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域,D1为区域D位于第一象限的部分,则(χy+cosχsiny)dσ等于().
已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则
双纽线(χ2+y2)2=χ2-y2所围成的区域面积可表示为().
在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是()
设二维随机变量(X,Y)在平面区域G上服从均匀分布,其中G是由x轴,y轴以及直线y=2x+1所围成的三角形域,则(X,Y)的关于X的边缘概率密度为()
随机试题
水疗中热水浴的温度为
男,43岁。长期咳嗽,经常咳脓痰15年。发热、咳脓臭痰1周来诊。查体:左肺下背部呼吸音弱,可闻湿啰音。应考虑诊断可能为
患者,女性,50岁,确诊为胃溃疡活动期,其最可能的腹痛特点是
有抗冻性要求的港口与航道工程混凝土,细骨料中总含泥量(以重量百分比计)的限值为不大于()。
下列关于发票的开具,表述不正确的是()。
陈某向李某借款10万元,并签订了借款合同。张某向李某单方面提交了签名的保证书,但未约定保证方式。借款到期后,陈某未清偿借款本息,经查,张某并不具有代偿能力。根据合同法律制度的规定,下列表述中,不正确的有()。
著作权中的财产权包括()等权利。
“历史不过是追求着自己目的的人的活动而已”,这句话表明()。
设C=,其中A,B分别是m,n阶矩阵.证明C正定A,B都正定.
Humanrelianceoninformationtechnologytodayisquicklybecomingglobal.TheLinetechnologicaldevelopmentsintheareasof
最新回复
(
0
)