首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=[α1,α2,α3,α4]x=α5有通解 k[-1,2,0,3]T+[2,一3,1,5]T. (1)求方程组[α2,α3,α4]x=α5的通解; (2)求方程组[α1,α2,α3,α4,α4+α5]x=α5的
设非齐次线性方程组Ax=[α1,α2,α3,α4]x=α5有通解 k[-1,2,0,3]T+[2,一3,1,5]T. (1)求方程组[α2,α3,α4]x=α5的通解; (2)求方程组[α1,α2,α3,α4,α4+α5]x=α5的
admin
2018-09-20
33
问题
设非齐次线性方程组Ax=[α
1
,α
2
,α
3
,α
4
]x=α
5
有通解
k[-1,2,0,3]
T
+[2,一3,1,5]
T
.
(1)求方程组[α
2
,α
3
,α
4
]x=α
5
的通解;
(2)求方程组[α
1
,α
2
,α
3
,α
4
,α
4
+α
5
]x=α
5
的通解.
选项
答案
(1)由题设,非齐次线性方程组 [α
1
,α
2
,α
3
,α
4
]x=α
5
有通解k[一1,2,0,3]
T
+[2,一3,1,5]
T
,则 r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=3. 且由对应齐次方程组的通解知,一α
1
+2α
2
+3α
4
=0,即α
1
=2α
2
+3α
4
,故α
2
,α
3
,α
4
线性无关(若线性相关,则r(α
1
,α
2
,α
3
,α
4
)<3,这和题设矛盾).α
2
,α
3
,α
4
是α
1
,α
2
,α
3
,α
4
及α
1
,α
2
,α
3
,α
4
,α
5
的极大线性无关组,α
1
,α
5
均可由α
2
,α
3
,α
4
线性表示,从而r(α
2
,α
3
,α
4
)=r(α
2
,α
3
,α
4
,α
5
)=3. 方程组 [α
2
,α
3
,α
4
]x=α
5
(*) 有唯一解.由题设条件,α
5
可由α
1
,α
2
,α
3
,α
4
线性表示,且表示法不唯一,可取k=2,使α
5
由α
1
,α
2
,α
3
,α
4
线性表示时,不出现α
1
,则得 α
5
=α
2
+α
3
+11α
4
,故方程组(*)的通解(唯一解)为x=[1,1,11]
T
. (2)对于非齐次线性方程组 [α
1
,α
2
,α
3
,α
4
,α
4
+α
5
]x=α
5
, (**) 因r(α
1
,α
2
,α
3
,α
4
,α
4
+α
5
)=r(α
1
,α
2
,α
3
,α
4
,α
4
+α
5
,α
5
)=3,故方程组(**)的通解的结构为 k
1
ξ
1
+k
2
ξ
2
+η. 因[α,α,α,α,α+α][*]=α
5
,故η
1
=[*] [α
1
,α
2
,α
3
,α
4
,α
4
+α
5
][*]=α
5
,故η
2
=[*] [α
1
,α
2
,α
3
,α
4
,α
4
+α
5
][*]=0,故ξ
1
=[*] 所以方程组(**)的通解为 k
1
ξ
1
+k
2
(η
1
一η
2
)+η
2
=[*] 其中k
1
,k
2
是任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/udIRFFFM
0
考研数学三
相关试题推荐
设为A的特征向量.A可否对角化?若可对角化,求可逆矩阵P,使得P一1AP为对角矩阵.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设随机变量X,Y都是正态变量,且X,Y不相关,则().
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设X,Y为两个随机变量,且D(X)=9,Y=2X+3,则X,Y的相关系数为________.
设A,B,C,D都是n阶矩阵,r(C4+DB)=n.设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设u=且二阶连续可导,又=0,求f(x).
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0<θ<1).证明:
设A为三阶实对称矩阵,且存在可逆矩阵又A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量为α=[2,5,一1]T.(1)求λ0的值;(2)计算(A*)一1;(3)计算行列式|A*+E|.
利用代换u=ycosx将微分方程y"cosx—2y’sinx+3ycosx=ex化简,并求出原方程的通解。
随机试题
正气强弱主要取决于
男,25岁,农民。半月前在水利工地上突起发热,伴头痛,眼眶痛,腰痛。病程第4日就诊时热已退,血压偏低,球结膜水肿、出血,胸背部见条索点状瘀点。前1日24小时尿量340m1,该病例最可能的诊断是()
根据招标投标法规定,()可以参加建设工程的投标。
陈某和其妻子经常争吵,但是其妻子又不愿意与其离婚,陈某遂萌生往其妻子饭里下毒杀害其妻的念头,但是又不忍心杀害自己的儿子。所以陈某将儿子送到相隔300里的父母家。并嘱咐儿子千万不要回家。陈某回家后在饭菜里下了毒就出去了。其儿子不愿意在奶奶家呆,遂偷偷跑回家。
遵循替代原则,并不是指只有合法的房地产才能成为估价对象,而是指依法判定估价对象是哪种权益状况的房地产,就应将其作为那种权益状况的房地产来估价。()
以下各项对于风险管理阐述不正确的是()。
( )组织结构适宜用于大的组织系统。
“马克思主义中国化”理论是第一次在()上提出的。
WhichofthefollowingstatementsisNOTtrue?
Thegovernmentistobanpaymentstowitnessesbynewspapersseekingtobuyuppeopleinvolvedinprominentcases(1)______thet
最新回复
(
0
)