首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(u,v)具有连续偏导数,且满足fu’(u,v)+fv’(u,v)=uv,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
设f(u,v)具有连续偏导数,且满足fu’(u,v)+fv’(u,v)=uv,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
admin
2019-01-26
50
问题
设f(u,v)具有连续偏导数,且满足f
u
’(u,v)+f
v
’(u,v)=uv,求y(x)=e
-2x
f(x,x)所满足的一阶微分方程,并求其通解。
选项
答案
方法一:y(x)=e
-2x
f(x,x)对x求导得 y’=-2e
-2x
f(x,x)+e
-2x
f
1
’(x,x)+e
-2x
f
2
’(x,x) =-2e
-2x
f(x,x)+e
-2x
[f
1
’(x,x)+f
2
’(x,x)] =-2y+e
-2x
[f
1
’(x,x)+f
2
’(x,x)], 因为f’
u
(u,v)+f
v
’(u,v)=uv,即f
1
’(u,v)+f
2
’(u,v)=uv,所以f
1
’(x,x)+f
2
’(x,x)=x
2
,因此y’=-2y+x
2
e
-2x
,即y(x)满足一阶微分方程y’+2y=x
2
e
-2x
。 由一阶线性微分方程的通解公式得 [*] 其中C为任意常数。 方法二:由y(x)=e
-2x
f(x,x)得 f(x,x)=e
2x
y(x), 因为f
u
’(u,v)+f
v
’(u,v)=uv,即f
1
’(u,v)+f
2
’(u,v)=uv,所以f
1
’(x,x)+f
2
’(x,x)=x
2
,即 [*] 将其代入f(x,x)=e
2x
y(x)有[e
2x
y(x)]’=x
2
,即 2e
2x
y(x)+e
2x
y’(x)=x
2
, 化简得 y’(x)+2y(x)=x
2
e
-2x
。 由一阶线性微分方程的通解公式得 [*] 其中C为任意常数。
解析
转载请注明原文地址:https://jikaoti.com/ti/ucWRFFFM
0
考研数学二
相关试题推荐
(1990年)在椭圆=1的第一象限部分上求一点P,使该点处的切线、椭圆及两坐标轴所围图形面积为最小(其中a>0,b>0).
(2014年)求极限
(1987年)曲线y=arctanχ在横坐标为1的点处的切线方程是_______;法线方程是_______.
设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知=3(1+t)。
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x0,y)=f(x0
已知n(n≥3)阶实矩阵A=(aij)n×n满足条件:(1)aij=Aij(i,j=1,2,…,n),其中Aij是aij的代数余子式;(2)a11≠0.求|A|.
设b>a>e,证明:ab>ba.
如图1.3—1所示,设曲线方程为y=x2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:.
设f(x)在[0,]上具有连续的二阶导数,且f’(0)=0.证明:存在ξ,η,ω∈ηsin2ξf"(ω).
随机试题
掌握一门外语,仅仅靠短时间的努力是远远不够的。(by)
异烟肼的副作用是
下列情形不属于医疗事故,除了
根据《建设工程监理规范》,下列内容中,不属于监理实施细则的是()。
下列公式中不正确的是( )。
中央银行作为“银行的银行”。其面向金融机构提供的服务包括()。①集中保管商业银行的存款准备金②作为商业银行的最后贷款人③组织全国商业银行之间的清算④管理各银行的黄金储备
如果方程cos2x—sinx+a=0在(0,]上有解,求a的取值范围.
“君子忧道不忧贫”,这句话反映了我国古代教育的()特征。
公安执法监督,是法定的监督主体对公安机关及其人民警察()所实施的监督。
在生产资料中属于劳动资料的是()。
最新回复
(
0
)