首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设m×n矩阵A的秩r(A)=m<n,E为m阶单位阵,则
设m×n矩阵A的秩r(A)=m<n,E为m阶单位阵,则
admin
2018-07-31
32
问题
设m×n矩阵A的秩r(A)=m<n,E为m阶单位阵,则
选项
A、A的任意m个向量必线性无关.
B、A的任意一个m阶子式都不为0.
C、若BA=O,则B=O.
D、经初等行变换,可将A化为(E
m
|O)的形式.
答案
C
解析
由BA=O知A的每个列向量均为齐次线性方程组Bx=0的解向量,因r(A)=m,知A的列向量组的极大无关组含m个向量,故方程组Bx=0的基础解系至少含m个解向量,即m一r(B)≥m,→r(B)≤0,→r(B)=0,→B=O.故(B)正确.注意当r(A)=m<n时,要将A化为标准形,仅仅通过初等行变换是不行的,还要对A作初等列变换,才能化成标准形,故(D)不对。
转载请注明原文地址:https://jikaoti.com/ti/uc2RFFFM
0
考研数学一
相关试题推荐
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为()
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设f(x)在(一∞,+∞)上有定义,且对任意的x,y∈(一∞,+∞)有|f(x)一f(y)|≤|x—y|.证明:|∫ab|f(x)dx一(b一a)f(a)|≤(b一a)2.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
计算,其中D为单位圆x2+y2=1所围成的第一象限的部分.
设随机变量X~U[一1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=___________.
证明:若A为n阶方阵,则有|A*|=|(一A)*|(n≥2).
随机试题
一组样本数据为:10.0,10.1,9.8,10.2,9.9,则该样本组平均值与极差分别为________。
视频信号的数字化过程中,亮度信号的取样频率可以比色度信号的取样频率低一些,以减少数字视频的数据量。()
叶酸类似物可以干扰
蛔虫产卵量大,粪检蛔虫卵最常用方法为
某技术方案的基准收益率为10%,内部收益率为15%,则该技术方案()。
作为一名警察。请你谈谈对于海珠大桥“跳桥秀事件”的看法。
传说老子遇到一位年逾百岁的老翁,老翁得意地说:“我从年少到现在,一直是游手好闲地轻松度日。我的同龄人辛苦一生却早已作古。现在我是否可以嘲笑他们忙碌一生,只是给自己换来一个早逝的结果呢?”老子拿了一块砖头和一块石头放在老翁面前说:“如果只能选择其一,您是要砖
设函数f连续,区域D={(x,y)|t2≤x2+y2≤4t2,x≥0,y≥0},F(t)=,则F’(t)=().
某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<p<1),则此人第4次射击恰好第2次命中目标的概率为()
A、Awaitress.B、Acashier.C、Asecurity.D、Asecretary.A男士向女士要一份伏特加酒和橙汁,女士把东西给了他并收取费用。因此,女士应当是服务员,本题选A。
最新回复
(
0
)