首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设m×n矩阵A的秩r(A)=m<n,E为m阶单位阵,则
设m×n矩阵A的秩r(A)=m<n,E为m阶单位阵,则
admin
2018-07-31
28
问题
设m×n矩阵A的秩r(A)=m<n,E为m阶单位阵,则
选项
A、A的任意m个向量必线性无关.
B、A的任意一个m阶子式都不为0.
C、若BA=O,则B=O.
D、经初等行变换,可将A化为(E
m
|O)的形式.
答案
C
解析
由BA=O知A的每个列向量均为齐次线性方程组Bx=0的解向量,因r(A)=m,知A的列向量组的极大无关组含m个向量,故方程组Bx=0的基础解系至少含m个解向量,即m一r(B)≥m,→r(B)≤0,→r(B)=0,→B=O.故(B)正确.注意当r(A)=m<n时,要将A化为标准形,仅仅通过初等行变换是不行的,还要对A作初等列变换,才能化成标准形,故(D)不对。
转载请注明原文地址:https://jikaoti.com/ti/uc2RFFFM
0
考研数学一
相关试题推荐
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22—2y32,且A*+2E的非零特征值对应的特征向量为α=,求此二次型.
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设A=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设Y~,求矩阵A可对角化的概率.
设n阶方阵A的每行元素之和为a,|A|≠0,则(1)a≠0;(2)A-1的每行元素之和为a-1.
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是()
证明:若A为n阶方阵,则有|A*|=|(一A)*|(n≥2).
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
随机试题
在中国近代史上提出“师夷长技以制夷”主张的是________。
气管上皮中除纤毛细胞和杯状细胞外,还有()
建筑中防火分区之间的防火墙上的防火门可采用乙级防火门。()
神经系统遗传病可分为4大类,下面应排除哪项
供应商在需要的时间里,向需要的地点,以可靠的质量,向需求方提供需要的物料之过程称为()。
奥苏伯尔认为,学生学习的实质是()。
汉代时期威胁我国边境的游牧民族是()。
LetterOneJan.25,2009DEArMr.GaanLi,Fromyouradv
PresidentClintonlatertodayjoins【B1】______PresidentsFord,CarterandBushat"thepresident’ssummitforAmerica’sfuture"【
I________________(趁着月光穿上衣服),whereraysstreamedthroughthenarrowwindownearmybed.
最新回复
(
0
)