首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β都是n维列向量时,证明 ①αβT的特征值为0,0,…,0,βTα. ②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
设α,β都是n维列向量时,证明 ①αβT的特征值为0,0,…,0,βTα. ②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
admin
2018-06-27
41
问题
设α,β都是n维列向量时,证明
①αβ
T
的特征值为0,0,…,0,β
T
α.
②如果α不是零向量,则α是αβ
T
的特征向量,特征值为β
T
α.
选项
答案
①方法一 用上例的结论.r(αβ
T
)≤1,因此αβ
T
的特征值为0,0,…,0,tr(αβ
T
). 设α=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
,则αβ
T
的对角线元素为a
1
b
1
,a
2
b
2
,…,a
n
b
n
,于是 tr(αβ
T
)=a
1
b
1
+a
2
b
2
+…+a
n
b
n
=β
T
α. 方法二 记A=αβ
T
,则A
2
=αβ
T
αβ
T
=(β
T
α)A,于是根据定理5.2的推论,A的特征值都满足等式λ
2
=(β
T
α)A,即只可能是0和β
T
α. 如果β
T
α=0,则A的特征值都是0. 如果β
T
α≠0,则根据定理5.3的②,A的所有特征值之和为tr(A)=β
T
α,它们一定是n-1个为0,一个为β
T
α. ②仍记A=αβ
T
,则Aα=αβ
T
α=(β
T
α)α,因此则α是A的特征向量,特征值为β
T
α.
解析
转载请注明原文地址:https://jikaoti.com/ti/uRdRFFFM
0
考研数学二
相关试题推荐
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中用正交变换化二次型xTAx为标准形,并写出所用正交变换;
设a1,a2,a3均为3维向量,则对任意常数k,ι,向量组a1+ka3,a2+ιa3。线性无关是向量组a1,a2,a3线性无关的
过第一象限中椭圆上的点(ξ,η)作该椭圆的切线,使该切线与两坐标轴的正向围成的三角形的面积为最小,求点(ξ,η)的坐标及该三角形的面积.
设证明:f(x,y)在点(0,0)处不可微.
设z=z(u,v)具有二阶连续偏导数,且z=z(z一2y,x+3y)满足求z=z(u,v)所满足的方程,并求z(u,v)的一般表达式.
设数列xn与yn满足,则下列断言正确的是
因为x→0+时,[*]所以[*]注解该题考查等价无穷小求极限的方法,当x→0常用的等价无穷小有:(1)x~sinx~tanx~arcsinx~arctanx~ex-1~ln(1+x);(2)1-cosx~,1-cosax~(3)(1+x)a-1~a
设二次型f=2x12+x22+ax32+2x1x2+2bx13+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设A=(aij)n×n为实对称矩阵,求二次型函数f(x1,x2,…,xn)=在Rn上的单位球面S:x12+x22+…+xn2=1上的最大值与最小值.
求函数F(x)=的间断点,并判断它们的类型。
随机试题
属“虚则补其母”的治法是
体外诱变常用于改变DNA片段的碱基序列,其中编码序列诱变主要有
成釉细胞瘤X线片上典型表现为
主要由自身反应性T细胞介导的自身免疫病是
合作建房贷款是为企事业单位(包括住房合作社和职工)共同筹集资金合作建造住房的贷款。贷款用于解决各种形式集资建房和住房合作社建房资金的不足。合作建房贷款包括两部分,一部分属于个人购房贷款,由单位或合作社统借统还。这部分贷款属于个人购建房贷款,贷款的发放和管理
关于企业财务审计报告的作用,以下说法正确的是()
下列各项中,对于税务师代理税务登记申报的说法中,不正确的是()。
某公司上一年度的净利润为570万元,销售收入为9700万元。总资产为12000万元,所有者权益为6700万元,则该公司上一年度的()。
甲公司记账本位币为人民币,乙公司为甲公司的境外经营子公司,其记账本位币为美元,甲公司持有乙公司80%股权并对其实施控制,期末甲公司编制的合并资产负债表中,应由乙公司少数股东分担的外币报表折算差额列示为()。
社会历史观的基本问题是
最新回复
(
0
)