首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明λ=-1必是矩阵A与B的特征值; (Ⅱ)若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明向量组α,β线性无关.
(Ⅰ)设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明λ=-1必是矩阵A与B的特征值; (Ⅱ)若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明向量组α,β线性无关.
admin
2018-06-12
55
问题
(Ⅰ)设A,B均为n阶非零矩阵,且A
2
+A=0,B
2
+B=0,证明λ=-1必是矩阵A与B的特征值;
(Ⅱ)若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明向量组α,β线性无关.
选项
答案
(Ⅰ)因为(E+A)A=0,A≠0,知齐次方程组(E+A)χ=0有非零解,即行列式|E+A|=0,所以λ=-1必是矩阵A的特征值.同理λ=-1也必是矩阵B的特征值. 类似地,由AB=0,B≠0,知行列式|A|=0,所以λ=0必是矩阵A的特征值,同理λ=0也必是矩阵B的特征值. (Ⅱ)对于Aα=-α,用矩阵B左乘等式的两端有BAα=-Bα,又因BA=0,故 Bα=0=0α. 即α是矩阵B属于特征值λ=0的特征向量. 那么,α与β是矩阵B的不同特征值的特征向量.因而α,β线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/uN2RFFFM
0
考研数学一
相关试题推荐
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设α1,α2,α3是4元非齐次线性方程组Aχ=b的3个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3(0,1,2,3)T,c表示任意常数,则线性方程组Aχ=b的通勰χ=()
设n阶矩阵A与B等价,则必有()
质量为M,长为l的均匀杆AB吸引着质量为m的质点C,C位于AB的延长线上并与近端距离为a,已求得杆对质点C的引力F=,其中k为引力常数.现将质点C在杆的延长线上从距离近端r0处移至无穷远时,则引力做的功为_______.
已知四元齐次方程组(Ⅰ),的解都满足方程式(Ⅱ)χ1+χ2+χ3=0.①求a的值.②求方程组(Ⅰ)的通解.
已知函数y(χ)可微(χ>0)且满足方程y(χ)-1=∫1χdt(χ>0)则y(χ)=_______.
设A是3阶矩阵,α1,α2,α3都是3维非零列向量,满足Aαi=iαi,(i=1,2,3).记α=α1+α2+α3.①证明α,Aα,A2α线性无关.②设P=(α,Aα,A2α),求P-1AP.
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
回答下列问题设f(x1,x2,x3)=,用可逆线性变换将f化为规范形,并求出所作的可逆线性变换.并说明二次型的对应矩阵A是正定矩阵;
回答下列问题设A,X均是2阶方阵,E是2阶单位阵,证明矩阵方程AX一XA=E无解.
随机试题
负载流过交流电流i=10sin314tA,电压则负载是()。
大面积烧伤病人24小时内主要的护理措施是
关于取得注册测绘师资格应当具备的业务条件,说法错误的是()。
赵兰特别喜欢自己活泼可爱的小侄女,打算在她12岁生日时为其侄女投保一份定额寿险,没想到保险公司拒保,其拒保的理由是()。
2018年2月,某企业发生自用房地产应交房产税3000元,应交增值税15000元、车船税5000元、城镇土地使用税1000元、消费税17000元,支付印花税500元。不考虑其他因素,该企业当月应计入管理费用的税金为()元。
参与性技术中不包括()。
在社会主义市场经济条件下,我国宏观经济调控的主要手段是行政手段。()
从中西文化比较的角度提出德、智、体“三育论”和“体用一致”的文化教育观的思想家是()
欧洲美元是指()。
Swans,notedforgracefulmovementsinthewater,havebeenthesubjectofmanypoetry,fairytales,legends,andmusicalcompos
最新回复
(
0
)