首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)为区间[0,1]上的非负连续函数. (1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积; (2)设f(x)在(0,1)内可导,且,证明(1)中的
设y=f(x)为区间[0,1]上的非负连续函数. (1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积; (2)设f(x)在(0,1)内可导,且,证明(1)中的
admin
2015-06-26
34
问题
设y=f(x)为区间[0,1]上的非负连续函数.
(1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
(2)设f(x)在(0,1)内可导,且
,证明(1)中的c是唯一的.
选项
答案
(1)S
1
(c)=cf(c),S
2
(c)= ∫
c
1
f(t)dt=一∫
1
c
(t)dt,即证明S
1
(c) S
2
(c),或cf(c)+ ∫
1
c
f(t)dt=0.令φ(x)=x∫
1
x
f f(t)dt,φ(0)=φ(1)=0,根据罗尔定理,存在c∈ (0,1),使得φ’(c)=0,即cf(c)+ ∫
1
c
f(t)dt=0,所以S
1
(c)=S
2
(c),命题得证. (2)令h(x)=xf(x)一∫
x
1
(f)dt,因为h’(x)=2f(x)+xf’(x)>0,所以h(x)在[0,1]上为单调函数,所以(1)中的f是唯一的.
解析
转载请注明原文地址:https://jikaoti.com/ti/uKNRFFFM
0
考研数学三
相关试题推荐
中国共产党确定土地革命和武装反抗国民党反动统治总方针是在()
材料1据香港《南华早报》网站9月12日报道,到今年年底,禁止生产和销售一次性发泡塑料餐具、塑料吸管和塑料棉签的规定将开始生效。不可生物降解的塑料袋将从今年开始逐步禁用,到2025年在全国范围内禁用。酒店必须停止提供免费的一次性塑料制品,与此同时,
1978年5月,一篇名为《实践是检验真理的唯一标准》的文章,在中国思想理论界起巨大震动,引发了席卷全国的关于真理标准问题的大讨论。1978年5月10日,《实践是检验真理的唯一标准》首先在中央党校内部刊物《理论动态》上刊发;5月11日,《光明日报》以“本报
实践证明,坚持和加强党的全面领导,是党和国家的根本所在、命脉所在,是全国各族人民的利益所在、幸福所在,是战胜一切困难和风险的“()”。
当前和今后一个时期,我国经济发展面临的问题,供给和需求两侧都有,但矛盾的主要方面在供给侧。比如,我国一些行业和产业产能严重过剩,同时,大量关键装备、核心技术、高端产品还依赖进口;事实证明,我国不是需求不足,或没有需求,而是需求变了,供给的产品却没有变,质量
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
设函数D={(x.y)丨x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,求
设可微函数f(x,y)在点(xo,yo)取得极小值,则下列结论正确的是
随机试题
鉴别咳嗽的特点,以查病因,饮食肥甘、生冷,咳嗽加重者多属咳痰味甜者属
患儿10月,人工喂养未加副食,平素很少到户外活动,因发热、咳嗽、气促2天以支气管肺炎收住院,突起惊厥,其急诊处理步骤应是
金匮肾气丸中熟地与附子用量比是
某火灾报警及联动控制系统工程,该工程的主要项目是自动灭火系统、紧急广播、事故照明、消防给水和排烟系统。该工程火灾探测器采用感烟、感温复合型探测器。安装完毕后,对该火灾探测器进行现场测试,并由相关部门对该系统工程进行了验收。该工程施工项目经理
在进行技术方案经济效果评价时,为了限制对风险大、盈利低的技术方案进行投资,可以采取的措施是()。
下列项目中,符合资产定义的是(),
我国商业银行违反用工法造成损失的原因包括()。
下列节日中,体现穆斯林信仰的有()。
2009年9月20日,第二届全国道德模范评选揭晓。这次表彰的全国道德模范都是我们身边的普通人。其中,有精心侍奉婆婆64年的村民张公兰;捡到20元现金,原封不动交给警方归还失主的保洁员郑仁东;坚守在大河边,无偿为来往的乡亲摆渡49年的村民赵永
关于合同相对性的说法,错误的是()。
最新回复
(
0
)