设二维非零向量口不是二阶方阵A的特征向量. 若A2a+Aa-6a=0,求A的特征值,讨论A可否对角化;

admin2020-03-10  68

问题 设二维非零向量口不是二阶方阵A的特征向量.
若A2a+Aa-6a=0,求A的特征值,讨论A可否对角化;

选项

答案由A2a+Aa-6a=0,得(A2+A-6E)a=0, 因为a≠0,所以r(A2+A-6E)<2,从而|A2+A-6E|=0,即|3E+A|·|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)a=0,得(2E-A)a=0,即Aa=2a,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)a=0,得(3E+A)a=0,即Aa=-3a,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩阵A有两个特征值-3,2,故A可对角化.

解析
转载请注明原文地址:https://jikaoti.com/ti/uEiRFFFM
0

最新回复(0)