首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量口不是二阶方阵A的特征向量. 若A2a+Aa-6a=0,求A的特征值,讨论A可否对角化;
设二维非零向量口不是二阶方阵A的特征向量. 若A2a+Aa-6a=0,求A的特征值,讨论A可否对角化;
admin
2020-03-10
68
问题
设二维非零向量口不是二阶方阵A的特征向量.
若A
2
a+Aa-6a=0,求A的特征值,讨论A可否对角化;
选项
答案
由A
2
a+Aa-6a=0,得(A
2
+A-6E)a=0, 因为a≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A-6E|=0,即|3E+A|·|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)a=0,得(2E-A)a=0,即Aa=2a,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)a=0,得(3E+A)a=0,即Aa=-3a,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩阵A有两个特征值-3,2,故A可对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/uEiRFFFM
0
考研数学三
相关试题推荐
设y=f(x)是微分方程y"一2y’+4y=一esinx的一个解,若f(x0)>0,f’(x0)=0,则函数f(x)在点x0().
设A是m×n阶矩阵,则下列命题正确的是().
设某商品的需求函数为Q=160—2P,其中Q,P分别表示需求量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是()
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A
向量组(Ⅰ)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi,i=1,2,…,s均可由向量组(Ⅰ)α1,α2,…,αs线性表出,则必有()
具有特解y1=e—x,y2=2xe—x,y3=3ex的三阶常系数齐次线性微分方程是()
设矩阵A=[α1,α2,…,αn]经过若干次初等列变换后变成了矩阵B[β1,β2,…,βn],则在A、B中().
关于二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
设二次型f(x1,x2,x3)=ax12+ax22+(a—1)x32+2x1x3—2x2x3。求二次型f的矩阵的所有特征值;
求∫arcsinxarccosxdx.
随机试题
请根据下图所示网络结构回答下列问题。如果将10.15.35.128/25划分3个子网,其中第一个子网能容纳31台主机,另外两个子网分别能容纳15台主机,第1个和第3个子网掩码分别是________和_________;第1个和第3个子网第一个可用的I
由于中小型企业势单力薄,经不起市场竞争的狂风暴雨的冲击,所以,中小型企业要想存在和发展下去,必须走()
下列哪些情况不适合植入人工晶体
食管位于纵隔内何处
最常见的产力异常是
成本控制中的主要对象是主要费用中的变动费用。()
城市规划要实现其指导城市建设和发展的作用,必须依据(),依靠它的影响力、约束力和强制力。
WhoisthemostimportantonetodrafttheDeclarationofIndependence?
在结构化分析与设计方法中,为了在需求改变时对软件的影响较小,应该使______。
Therearemorethan300millionsofusintheUnitedStates.andsometimesitseemslikewe’reallfriendsonFacebook.Butthe
最新回复
(
0
)