首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,一1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,一2,2,0),α5= (2,1,5,1 0). ①求r(α1,α2,α3,α4,α5). ②求一个最大线性无关组,并且把其余向量用它线性表示.
设α1=(1,一1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,一2,2,0),α5= (2,1,5,1 0). ①求r(α1,α2,α3,α4,α5). ②求一个最大线性无关组,并且把其余向量用它线性表示.
admin
2017-10-21
34
问题
设α
1
=(1,一1,2,4),α
2
=(0,3,1,2),α
3
=(3,0,7,14),α
4
=(1,一2,2,0),α
5
=
(2,1,5,1 0).
①求r(α
1
,α
2
,α
3
,α
4
,α
5
).
②求一个最大线性无关组,并且把其余向量用它线性表示.
选项
答案
①构造矩阵A=(α
1
T
,α
2
T
,α
3
T
,α
4
T
,α
5
T
),并对它作初等行变换: [*] 记B和C分别是中间的阶梯形矩阵和右边的简单阶梯形矩阵.B有3个非零行,则r(α
1
,α
2
,α
3
,α
4
,α
5
)=3. ②B的台角在1,2,4列,则α
1
,α
2
,α
4
是α
1
,α
2
,α
3
,α
4
,α
5
的一个最大无关组.设C的列向量组为γ
1
,γ
2
,γ
3
,γ
4
,γ
5
,则α
1
,α
2
,α
3
,α
4
,α
5
和γ
1
,γ
2
,γ
3
,γ
4
,γ
5
有相同线性关系. 显然γ
3
=3γ
1
+γ
2
,γ
5
=2γ
1
+γ
2
,于是α
3
=3α
1
+α
2
,α
5
=2α
1
+α
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/u0SRFFFM
0
考研数学三
相关试题推荐
设随机变量X,Y独立同分布,且X~N(0,σ2),再设U=aX+bY,V=aX一by,其中a,b为不相等的常数.求:(1)E(U),E(V),D(U),D(V),ρUV;(2)设U,V不相关,求常数a,b之间的关系.
在长为L的线段上任取两点,求两点之间距离的数学期望及方差.
设某箱装有100件产品,其中一、二、三等品分别为80件、10件和10件,现从中随机抽取一件,记Xi=(1)求(X1,X2)的联合分布;(2)求X1,X2的相关系数.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aβ1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设α1,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β一αm线性无关.
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得。
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得.
设,则α1,α2,α3经过施密特正交规范化后的向量组为
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
随机试题
________不属于票据关系。
当肾癌侵犯下腔静脉形成瘤栓而无淋巴结或远处转移,分期应为
某高速公路合同段,开工前承包人提交了总体施工组织计划并通过监理人的批准。由于某段填方路基红线外有数户民房与红线距离较近,3月5日施工单位进行路基碾压时,由于振动导致一户民房开裂,因此赔偿10万元损失。此后村民不同意在民房附近300m附近采用振动压
某企业由各部门提出下一年度部门目标,经公司审核后,与各部门签订目标责任书。到年底各部门的绩效目标都完成了,而公司的整体绩效很差。造成这种问题的主要原因是()。
四川的著名宫观青羊宫的主要建筑有()。
—Howdoyouthinkofthejobhedidlastweek?—Welldone.______.
1999年至2006年期间,地质灾害造成的年平均直接经济损失是1998年直接经济损失的()。
下列哪些现象可能诱发侵犯行为?()。
下列不属于直接金融工具的是()。
Whoannouncedthemeasureafterfightingbrokeout?
最新回复
(
0
)