首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnχ与y=2χ+ln2χ+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnχ与y=2χ+ln2χ+k在(0,+∞)内的交点个数(其中k为常数).
admin
2016-10-21
36
问题
讨论曲线y=2lnχ与y=2χ+ln
2
χ+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(χ)=2χ+ln
2
χ+k-2lnχ(χ∈(0,+∞)),于是本题两曲线交点个数即为函数f(χ)的零点个数.由 f′(χ)=2+[*](χ+lnχ-1), 令g(χ)=χ+lnχ-1 g′(χ)=[*] 令f′(χ)=0可解得唯一驻点χ
0
=1∈(0,+∞). 当0<χ<1时f′(χ)<0,f(χ)在(0,1]单调减少;而当χ>1时f′(χ)>0,f(χ)在[1,+∞)单调增加.于是f(1)=2+k为f(χ)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(χ)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(χ)在(0,+∞)内恒值函数,无零点. 当f(1)=0即k=-2时f(χ)在(0,+∞)内只有一个零点χ
0
=1. 当f(1)<0即k<-2时需进一步考察f(χ)在χ→0
+
与χ→∞的极限: [*])[2(χ+k)+lnχ(lnχ-2)]=+∞, [*][(2(χ+k)+lnχ(lnχ-2)]=+∞, 由连续函数的零点定理可得,[*]χ
1
∈(0,1)与χ
2
∈(1,+∞)使得f(χ
1
)=f(χ
2
)=0,且由f(χ)在(0,1)与(1,+∞)内单调可知f(χ)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(χ)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://jikaoti.com/ti/tnzRFFFM
0
考研数学二
相关试题推荐
设f(x)=∫0xdt∫0ttln(1+u2)du,g(x)=∫0sinx(1-cost)dt,则当x→0时,f(x)是g(x)的().
ef’(x)/f(x)
设函数f(x)、g(x)满足条件:f’(x)=g(x),g’(x)=f(x).又f(0)=0,g(x)≠0,试求由曲线与x=0,x=t(t>0),y=1所围成的平面图形的面积。
设f(x)在[a,b]上可导,且f’(x)≤M,f(a)=0,证明:∫abf(x)dx≤(b-a)2
设常数λ>0,且级数________。
若an收敛(an≥0,n=1,2,…),则下列结论中错误的是________。
设f(x)可导,则当△x→0时,△y-dy是△x的().
当x→0(或0+)时,下列无穷小量与x相比是什么阶的无穷小量?
(1992年)已知f〞(χ)<0,f(0)=0,试证:对任意的两正数χ1和χ2,恒有f(χ1+χ2)<f(χ1)+f(χ2)成立.
随机试题
巨幼细胞贫血病人红细胞数量降低的根本原因是
B.口咽通气管C.纤维支气管镜引导鼻插管D.气管切开E.环甲膜穿刺破伤风患者,张口受限,出现发热、呼吸困难,SpO285%一90%
下列哪项不是结核病的基本病理变化
根据《立法法》规定,会计部门规章应当()。
下面对卖方承担的货物风险叙述,正确的是()。
《游春图》以青绿勾填法描写山川、人物,尚无皴法。()
结合材料回答问题:材料1国民党虽然有许多缺点与错误,然终为中国唯一革命的民主派,自然算是民主的联合战线中重要分子。反对帝国主义的联合战线:以工人农民及小资产阶级革命的党派或分子为主力军,向一切帝国主义者加以攻击:同时亦可联合半民族运动的
下列对IPv6地址的表示中,错误的是()。
96
AAmerica’ssuburbanshoppingmallssupplyvisitorswithconvenienceandcomfort—spaciouswalkways,piped-inmusic,avastcornu
最新回复
(
0
)