首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,下列命题正确的是 ( )
设A为n阶矩阵,下列命题正确的是 ( )
admin
2019-04-09
49
问题
设A为n阶矩阵,下列命题正确的是 ( )
选项
A、若α为A
T
的特征向量,那么α为A的特征向量
B、若α为A
*
的特征向量,那么α为A的特征向量
C、若α为A
2
的特征向量,那么α为A的特征向量
D、若α为2A的特征向量,那么α为A的特征向量
答案
D
解析
(1)矩阵A
T
与A的特征值相同,但特征向量不一定相同,故(A)错误.
(2)假设α为A的特征向量,λ为其特征值,当λ≠0时α也为A
*
的特征向量.这是由于
但反之,α为A
*
的特征向量,那么α不一定为A的特征向量.
例如:当r(A)<n—1时,A
*
=O,此时,任意n维非零列向量都是A
*
的特征向量,故A
*
的特征向量不一定是A的特征向量.可知(B)错误.
(3)假设α为A的特征向量,λ为其特征值,则α为A
2
的特征向量.这是由于
A
2
α=A(Aα)=λAα=λ
2
α.
但反之,若α为A
2
的特征向量,α不一定为A的特征向量.例如:假设Aβ
1
=β
1
,Aβ
2
=一β
2
,其中β
1
,β
2
≠0.此时有A
2
(β
1
+β
2
)=A
2
β
1
+A
2
β
2
=β
1
+β
2
,可知β
1
+β
2
为A
2
的特征向量.但β
1
,β
2
是矩阵A两个不同特征值的特征向量,它们的和β
1
+β
2
不是A的特征向量.故(C)错误.
(4)若α为2A的特征向量,则存在实数λ使得2Aα=λα,此时有Aα=
,因此α为A的特征向量,可知(D)是正确的,故选(D).
转载请注明原文地址:https://jikaoti.com/ti/tYBRFFFM
0
考研数学三
相关试题推荐
设A是m×n阶矩阵,下列命题正确的是().
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
设f(x)=∫0tanxarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)-f(ξ)=f(2)-2f(1).
设f(x)=∫-1x(1一|t|)dt(x>-1),求曲线y=f(x)与x轴所围成的平面区域的面积.
设f(x)∈C[0,1],f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
设A,B为任意两个不相容的事件且P(A)>0,P(B)>0,则下列结论正确的是().
设则
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且证明(1)中的c是唯一的.
设二次型f(x1,x2,x3)=x12+4x22+2x32+2tx1x2+2x1x3为正定二次型,求t的范围.
随机试题
肝硬化病人引起肝肾综合征的因素中,下列哪项不正确
下列哪种并发症主要出现于骨折早期
A.发汗解表,通窍B.发汗解表,化湿和中,利水消肿C.发汗解表,消肿排脓D.祛风解表,透疹消疮,止血止痉E.发汗解表,胜湿止痛荆芥的功效是
开发区环境影响识别对重污染或大于( )规模的开发区,除考虑对区外环境的影响外,还应识别区外经济活动对区内的环境影响。
《中华人民共和国渔业法》规定,使用炸鱼、毒鱼、电鱼等破坏渔业资源方法进行捕捞的,违反关于禁渔区、禁渔期的规定进行捕捞的,或者使用禁用的渔具、捕捞方法和小于最小网目尺寸的网具进行捕捞或者渔获物中幼鱼超过规定比例的,没收渔获物和违法所得,处()的罚款
Sheandherhusbandareofthesame________;theybothwanttheirdaughtertogoabroadforfurthereducation.
2018年6月,习近平在山东考察时强调,我们党要永远立于不败之地,就要不断推进自我革命,教育引导党员、干部特别是领导干部从思想上正本清源、固本培元,筑牢思想道德防线,增强拒腐防变和抵御风险能力,时刻保持共产党人的政治本色。这一论断蕴含的哲学道理是(
论述辛亥革命推翻封建帝制是历史合力的结果。(南京大学2013年历史学基础(中国近现代史)真题)
ThereisgrowinginterestinEastJapanRailwayCo.ltd.,oneofthesixcompanies,createdoutoftheprivatizednationalrailw
(2010年下半年)Simple公司接到一栋大楼的布线任务,经过分析决定将大楼的四层布线任务分别交给甲、乙、丙、丁四个项目经理,每人负责一层布线任务,每层面积为10000平方米。布线任务由同一个施工队施工,该工程队有5个施工组。甲经过测算,预计每个施工组每
最新回复
(
0
)