首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
admin
2017-03-02
37
问题
设f(x)在[0,1]上连续可导,f(1)=0,∫
0
1
xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
选项
答案
由分部积分,得∫
0
1
xf’(x)dx=xf(x)|
0
1
一∫
0
1
f(x)dx=一∫
0
1
f(x)dx=2,于是∫
0
1
f(x)dx=一2.由拉格朗日中值定理,得f(x)=f(x)一f(1)=f’(η)(x一1),其中η∈(x,1),f(x)=f’(η)(x一1)两边对x从0到1积分,得∫
0
1
f(x)dx=∫
0
1
f’(η)(x一1)dx=一2因为f’(x)在[0,1]上连续,所以f’(x)在[0,1]上取到最小值m和最大值M,由M(x一1)≤f’(η)(x一1)≤m(x一1)两边对x从0到1积分,[*]由介值定理,存在ξ∈[0,1],使得f’(ξ)=4.
解析
转载请注明原文地址:https://jikaoti.com/ti/tSSRFFFM
0
考研数学三
相关试题推荐
设A=b=已知线性方程组Ax=b存在2个不同的解求λ,a;
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
矩阵已知A的一个特征值为3,试求y.
设函数=_______.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
把第二类曲面积分化为第一类曲面积分:(1)∑为坐标面x=0被柱面|y|+|z|=1所截的部分,并取前侧;(2)∑为平面z+x=1被柱面x2+y2=1所截的部分,并取下侧;(3)∑为平面3x+2y+z=1位于第一象限的部分,并取上侧;(4)∑为抛物
[*]变换积分次序得原式=
设f(x)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax一1).
求函数y=excosx的极值.
随机试题
引起心跳骤停的原因包括()。
屈原生活的时代是()
二尖瓣狭窄右室负荷加大时心电图可见
枕左前位胎头进入骨盆入口的衔接径线是
(2005年)设函数若f(x)在x=0可导,则a的值是()。
某钢结构工程在施工过程中,发现构件焊接出现不合格,施工项目部把钢结构焊接施工的生产因素作为第一层面的因素进行分析,然后对第一层面的各个因素,再进行第二层面的可能原因的深入分析,直至找出主要原因,这种工程质量统计方法是()。
2018年3月11日,甲公司签发一张商业汇票,收款人为乙公司,到期日为2017年9月11日,甲公司的开户银行P银行为该汇票承兑。2017年6月30日,乙公司从丙公司采购一批货物,将该汇票背书转让给丙公司,丙公司9月30日持该汇票到其开户银行Q银行办理委托
选择测验必须注意,所选测验必须()。
市场经济作为一种经济运行模式,不具有独立的社会性质,因此可以说市场经济与社会性质没有关系。()
【S1】【S2】
最新回复
(
0
)