首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶可逆阵,其每行元素之和都等于常数a.证明:(1)a≠0;(2)A-1的每行元素之和均为.
设A是n阶可逆阵,其每行元素之和都等于常数a.证明:(1)a≠0;(2)A-1的每行元素之和均为.
admin
2017-11-13
50
问题
设A是n阶可逆阵,其每行元素之和都等于常数a.证明:(1)a≠0;(2)A
-1
的每行元素之和均为
.
选项
答案
(1)将A中各列加到第一列,得[*] 若a=0,则|A|=0,这与A是可逆阵矛盾,故a≠0.(2)令A=[α
1
,α
2
……α
n
],A
一1
=[β
1
β
2
……β
n
],E=[e
1
,e
2
……e
n
],由A
一1
A=E,得A
一1
[α
1
,α
2
……α
n
]=[e
1
,e
2
……e
n
],A
一1
a
i
=e
i
,j=1,…,n,A
一1
α
1
+A
一1
α
2
+…+A
一1
α
n
=e
1
+e
2
+…+e
n
,[*]得证A
一1
的每行元素之和为[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/tEVRFFFM
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数,证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
证明:当x>0时,x2>(1+x)In2(1+x).
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设试问当a取何值时,f(x)在点x=0处,①连续,②可导,③一阶导数连续,④二阶导数存在.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求矩阵A的特征值;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求矩阵A的全部特征值;
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
设f(x)在(一∞,+∞)内一阶连续可导,且.证明:收敛,而发散.
随机试题
耳得之而为声,目遇之而成色;取之无禁,用之不竭。
磷酸戊糖途径的重要生理功能是生成
下列选项中,对诊断急性坏死性胰腺炎最有价值的有
五行关系中“见肝之病.知肝传脾”是指
《法国民法典》和《德国民法典》是大陆法系非常重要的两部法典,关于这两部法典下列说法正确的是?()
在下列固定资产的折旧方法中,属于直线折旧法的是( )。
当本工作有紧后工作时,其自由时差等于所有紧后工作最早开始时间与本工作()。
行为主义创立的标志是1914年美国心理学家()出版了《行为比较心理学导论》一书,由此他被称为行为主义的创始人。
古代散文名篇《谏逐客书》是谁写的?
Whatwillbethenextrevolutionaboutforsuperpowers?
最新回复
(
0
)