首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x)。若∫0f(x)g(t)dt=x2ex,求f(x)。
设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x)。若∫0f(x)g(t)dt=x2ex,求f(x)。
admin
2018-04-14
43
问题
设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x)。若∫
0
f(x)
g(t)dt=x
2
e
x
,求f(x)。
选项
答案
f(x)的反函数是g(x),根据反函数的性质有g[f(x)]=x,∫
0
f(x)
g(t)dt=x
2
e
x
两边对x求导,有 (∫
0
f(x)
g(t)dt)’=(x
2
e
x
)’[*]g[f(x)]f’(x)=x
2
e
x
+2xe
x
, 又g[f(x)]=x,所以 xf’(x)=x
2
e
x
+2xe
x
[*]f’(x)=xe
x
+2e
x
,x∈(0,+∞), 两边积分∫f’(x)dx=∫(xe
x
+2e
x
)dx[*]f(x)=∫xe
x
dx+∫2e
x
dx [*]f(x)=∫xde
x
+2e
x
[*]xe
x
-∫e
x
dx+2e
x
[*]f(x)=xe
x
-e
x
+2e
x
+C[*]f(x)=xe
x
+e
x
+C。 由于题设f(x)在[0,+∞)上可导,所以在x=0处连续,故 f(0)=[*](xe
x
+e
x
+C)=1+C=0, 所以C=-1,于是 f(x)=xe
x
+e
x
-1,x∈[0,+∞)。
解析
转载请注明原文地址:https://jikaoti.com/ti/tDdRFFFM
0
考研数学二
相关试题推荐
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则
设线性方程组(I)与方程x1+2x2+x3=a-1(Ⅱ)有公共解,求口的值及所有公共解.
用导数的定义求函数y=1-2x2在点x=1处的导数。
设f(x)为连续函数,φ(x)=∫0sinxf(tx)dt,则在x=0处,下列正确的是().
如下图,连续函数y=f(x)在区间[-3,-2],[2,3]上图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是().
(2010年试题,1)函数的无穷间断点数为().
记行列式为f(x),则方程f(x)=0的根的个数为
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
随机试题
关于滴虫性阴道炎,下列说法错误的是()
下列国家中安乐死合法化的是()
甲公司自1994年起其生产的衬衫上使用“娇月”商标;1996年,乙公司也开始使用“娇月”商标。乙公司1997年10月向工商行政管理局提出注册商标申请,1998年3月乙公司的“娇月”商标经国家商标局核准注册,其核定使用的商品为服装。1999年1月,乙公司发现
关于举证期限的确定,下列说法正确的是()。
国际代理实践中,在代理关系的成立及效力、当事人的权利义务、代理权的变更和终止等方面可能出现代理的法律冲突,则根据各国法律规定和司法实践,下列对代理法律适用表述正确的有哪些?()
根据《招标投标法实施条例》,投标保证金有效期截止日应当为()。
如图所示的平行板器件中,存在互相垂直的匀强磁场和匀强电场,磁场的磁感应强度B1=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中线,紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B2=0.25
文人士大夫的墨竹墨梅在明代后期形成独特体系。()
清代时期,乾隆皇帝组织编撰了中国历史上最大的一部丛书()。
在平面直角坐标系中,直线经过Q(-2,-3)和R(4,1.5)两点。(1)求这条直线的斜率。(2)求这条直线的纵截距。(3)求这条直线的横截距。(4)判断点(10,8)是否在这条直线上。(5)判断直线y=-(4/3)x+9是否与这条直线垂直。(
最新回复
(
0
)