已知A是3阶方阵,A的每行元素之和为3,且齐次线性方程组Ax=0有通解k1(1,2,一2)T+k2(2,1,2)T,其中k1,k2是任意常数,α=(1,1,1)T. (Ⅰ)证明:对任意的一个3维向量β,向量Aβ和α线性相关; (Ⅱ)若β=(

admin2016-05-03  38

问题 已知A是3阶方阵,A的每行元素之和为3,且齐次线性方程组Ax=0有通解k1(1,2,一2)T+k2(2,1,2)T,其中k1,k2是任意常数,α=(1,1,1)T
    (Ⅰ)证明:对任意的一个3维向量β,向量Aβ和α线性相关;
    (Ⅱ)若β=(3,6,一3)T,求Aβ.

选项

答案当β=(3,6,一3)T时,令β=x1ξ1+x2ξ2+x3ξ3,解非齐次线性方程组 [*] 即A有特征值λ1=3,对应的特征向量为ξ1=(1,1,1)T. Ax=0有通解k1(1,2,一2)T+k2(2,1,2)T,知A有特征值λ23=0,对应的特征向量为 ξ2=(1,2,一2)T,ξ3=(2,1,2)T. 因ξ1,ξ2,ξ3线性无关,故任意3维向量β均可由ξ1,ξ2,ξ3线性表出,设 β=x1ξ1+x2ξ2+x3ξ3, 从而有Aβ=A(x1ξ1+x2ξ2+x3ξ3)=x11=3x1[*]=3x1α, 得证Aβ和α线性相关. (Ⅱ)[解]当β=(3,6,一3)T时,令β=x1ξ1+x2ξ2+x3ξ3,解非齐次线性方程组 [*] 解得 (x1,x2,x3)T=(3,2,一1)T. 即 β=3ξ1+2ξ23, Aβ=A(3ξ1+2ξ23)=3ξ1=3×3×[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/sgxRFFFM
0

相关试题推荐
随机试题
最新回复(0)