首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a≠0为常数,f(χ)在(-∞,+∞)连续,考察一阶线性常系数方程 y′+ay=f(χ) (χ∈(-∞,+∞)). (*) (Ⅰ)求通解的表达式; (Ⅱ)设a>0,f(χ)=b,y(χ)为方程(*)的任意一个解,求y(
设a≠0为常数,f(χ)在(-∞,+∞)连续,考察一阶线性常系数方程 y′+ay=f(χ) (χ∈(-∞,+∞)). (*) (Ⅰ)求通解的表达式; (Ⅱ)设a>0,f(χ)=b,y(χ)为方程(*)的任意一个解,求y(
admin
2018-06-12
39
问题
设a≠0为常数,f(χ)在(-∞,+∞)连续,考察一阶线性常系数方程
y′+ay=f(χ) (χ∈(-∞,+∞)). (*)
(Ⅰ)求通解的表达式;
(Ⅱ)设a>0,
f(χ)=b,y(χ)为方程(*)的任意一个解,求
y(χ);
(Ⅲ)设a<0,
f(χ)=b,又∫
0
∞
e
aχ
f(χ)dχ收敛,求
y(χ).
选项
答案
(Ⅰ)将方程两边乘μ(χ)=e
∫adχ
=e
aχ
得 (ye
aχ
)′=e
aχ
f(χ)[*]ye
aχ
=∫e
aχ
f(χ)dχ+C. 于是得通解y=Ce
-aχ
+e
-aχ
∫e
aχ
f(χ)dχ或y=Ce
-aχ
+e
aχ
∫e
aχ
f(t)dt,其中C为[*]常数. (Ⅱ)由题(Ⅰ)的结论及洛必达法则即得 [*] (Ⅲ)由题(Ⅰ)的结论及洛必达法则即得 [*] 当C+∫
0
+∞
e
at
f(t)dt=0时,这是求[*]型极限,可用洛必达法则求得极限.
解析
转载请注明原文地址:https://jikaoti.com/ti/sN2RFFFM
0
考研数学一
相关试题推荐
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是()
设A是m×n矩阵,则齐次线性方程组Aχ=0仅有零解的充分条件是()
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
已知方程组有解,证明:方程组无解.
设A为n阶矩阵(n≥2),A*为A的伴随矩阵,证明
求函数g(χ)=eχ+6aχ的零点个数,其中a<0为参数.
求下列曲面的方程:以曲线为母线,绕z轴旋转一周而生成的曲面;
设f(x)=,求曲线y=f(x)与直线y=所围成平面图形绕Ox轴所旋转成旋转体的体积.
设在平面区域D上数量场u(x,y)=50-x2-4y2,试问在点P0(1,-2)∈D处沿什么方向时u(x,y)升高最快,并求一条路径,使从点P0(1,-2)处出发沿这条路径u(x,y)升高最快.
求过两点A(0,1,0),B(-1,2,1)且与直线x=-2+t,y=1-4t,z=2+3t平行的平面方程.
随机试题
关于显微血管外科错误的是
[2011专业案例真题上午卷]某2×300MW火电厂,每台机组装设3组蓄电池,其中2组110V蓄电池对控制负荷供电。每台机组的220V直流系统间设有联络线。蓄电池选用阀控式密封铅酸蓄电池(贫液)(单体2V),浮充电压取2.23V,均衡充电电压取2.3V。1
为提高规划的科学性,要充分发挥()的作用。
货物招标的经济原则是指在保证质量的前提下,注意保证招标货物的()。
一个心动周期是指()
传说中的“鬼火”现象其实是人体内的一种元素在氧化过程中,部分能量以光能的形式释放所致。这种人体内的元素是()。
审慎原则并不是不尊重科学,而是对科学应用的务实态度。科研成果的取得及其社会认可,往往代表着巨大的经济利益甚或科学家的终身成就,这就很难保证科学家不会放松科学原则要求而违规;科研成果的社会化往往与企业利益相连,企业逐利时难免会刻意隐瞒危害;由于科研的未知性因
下列诗句未涉及秋天的是()。
Readthearticlebelowandchoosethebestsentencefromthelistonthenextpagetofilleachofthegaps.Foreachgap(1-
Matchthesoundswiththeircorrectmeanings.Writetheappropriateletteronyouranswersheet.A.continuoushigh-pitchedhum
最新回复
(
0
)