首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2, β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的一个基础解系?
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2, β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的一个基础解系?
admin
2021-01-19
38
问题
已知α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的一个基础解系,若β
1
=α
1
+tα
2
,
β
2
=α
2
+tα
3
,β
3
=α
3
+tα
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是Ax=0的一个基础解系?
选项
答案
由于β
1
,β
2
,β
3
,β
4
均为α
1
,α
2
,α
3
,α
4
的线性组合,所以β
1
,β
2
,β
3
,β
4
均为Ax= 0的解.下面证明β
1
,β
2
,β
3
,β
4
线性无关.设 k
1
β
1
+k
2
β
2
+k
3
β
3
+k
4
β
4
=0, 即 (k
1
+tk
4
)α
1
+(tk
1
+k
2
)α
2
+(tk
2
+k
3
)α
3
+(tk
3
+k
4
)α
4
=0, 由于α
1
,α
2
,α
3
,α
4
线性无关,因此其系数全为零,即 [*] 其系数行列式[*] 可见,当1-t
4
≠0,即t≠±1时,上述方程组只有零解k
1
=k
2
=k
3
=k
4
=0,因此向量组β
1
,β
2
,β
3
,β
4
线性无关,从而β
1
,β
2
,β
3
,β
4
也为Ax=0的一个基础解系.
解析
[分析] 基础解系应满足两个条件:首先应是解向量,其次应线性无关且向量个数为
s=n-r(A).本题的关键是证明β
1
,β
2
,β
3
,β
4
线性无关,而抽象向量组的线性无关性的证明一般都采用定义法.
[评注] 对于一个抽象向量组的线性相关性的讨论,基本方法有定义法(如本题的证明)和等价法,若已知条件中包含矩阵等式或矩阵关系式时,可考虑转化为矩阵的秩来进行判断.
本题也可用等价法证明:由题设,向量组β
1
,β
2
,β
3
,β
4
可由向量组β
1
,β
2
,β
3
,β
4
线性表示,且有
(β
1
,β
2
,β
3
,β
4
)=(α
1
,α
2
,α
3
,α
4
)
可见,向量组α
1
,α
2
,α
3
,α
4
可由向量组β
1
,β
2
,β
3
,β
4
线性表示的充要条件是行列式
即当t≠±1时,向量组α
1
,α
2
,α
3
,α
4
与向量组β
1
,β
2
,β
3
,β
4
等价,从而有向量组β
1
,β
2
,β
3
,β
4
线性无关,因此也为Ax=0的一个基础解系.
转载请注明原文地址:https://jikaoti.com/ti/sLARFFFM
0
考研数学二
相关试题推荐
设函数f(x)连续,且∫0xf(t)dt=sin2x+∫0xtf(x-t)dt.求f(x).
设函数f(u)具有连续导数,且方程x一z=yf(z2一x2)确定隐函数z=z(x,y),则
函数F(χ)=(χ∈(-∞,+∞))的值域区间是_______.
曲线Y=e-x2的上凸区间是_________.
下列二元函数在点(0,0)处可微的是
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T求方程组的通解。
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0).试证明:对任意:f’(x)都存在,并求f(x).
求极限:
求极限
随机试题
牙源性钙化上皮瘤内的嗜伊红物质是
女孩,4岁,生后半年开始出现便秘,需辅之泻药或开塞露排便。查体:消瘦,腹胀,左下腹可扪及质硬包块。钡灌肠检查发现直肠、乙状结肠远端狭窄,乙状结肠近端和降结肠明显扩张。最可能的诊断是
跟腱炎的治疗要点不包括
睾丸中有神经、血管进入的一端是
依据《中华人民共和国注册建筑师条例》,下列情况中,可以申请参加一级注册建筑师考试的是()。
按照编制预算时出发点的特征不同,预算可以分为()。
下列关于岗位薪酬制的说法中,不正确的()。
泛化指某种特定刺激的条件反应形成后,另外一些类似的刺激会诱发同样的条件反应。新刺激越近似于原刺激,条件反应被诱发的可能性就越大。根据上述定义,下列可以称为泛化现象的是:
J.Martin的战略数据规划的重要内容之一就是确定企业的()。
A、About3500B.C.B、Longbeforehistorywaswritten.C、Whentherewashistoryrecord.D、About4500B.C.BWhendidmanbegintoh
最新回复
(
0
)